Skip to main content

Two Computational Schemes of χ (2)

  • Chapter
  • First Online:
Book cover Theory of Sum Frequency Generation Spectroscopy

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 97))

  • 1041 Accesses

Abstract

Now we provide the computational schemes of SFG spectroscopy on the basis of the microscopic theory described in the preceding Chap. 3. The theme of this chapter is to define two methods of calculating χ (2) spectra, via energy representation and time-dependent representation. These methods can be utilized to calculate the SFG spectra by molecular dynamics (MD) simulation. These methods connect the formal theory of χ (2) to actual spectra of interfaces that consist of molecules, and thus open new routes of SFG analysis with the aid of MD simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The molecular hyperpolarizability \(\boldsymbol {\alpha }^{(2),\text{res}}_{l}\) in Eq. (4.4) includes the suffix l to allow for distinguishing different species.

  2. 2.

    If the polarizability derivative tensor is approximated with a spherical tensor (R ≈ 1) by \(\partial \alpha _{p^\prime q^\prime }/\partial q_1 \approx c \: \delta _{p^\prime q^\prime }\), the yy element (∂α yy∂q 1) is shown to be independent of the transformation,

    $$\displaystyle \begin{aligned} \left( \frac{\partial \alpha_{yy}}{\partial q_1} \right)= \sum_{p^\prime}^{\xi \sim \zeta} \sum_{q^\prime}^{\xi \sim \zeta} \mathcal{D}_{y p^\prime} \mathcal{D}_{y q^\prime} \left( \frac{\partial \alpha_{p^\prime q^\prime}}{\partial q_1} \right) \approx \sum_{p^\prime}^{\xi \sim \zeta} \sum_{q^\prime}^{\xi \sim \zeta} \mathcal{D}_{y p^\prime} \mathcal{D}_{y q^\prime} \; c \: \delta_{p^\prime q^\prime} = c \; (> 0). \end{aligned}$$

    Since the anisotropy is not large (R ≃ 0.8 in Table 4.2), the qualitatively similar trend should hold for the acetonitrile molecule.

  3. 3.

    Therefore, the matrix elements for an arbitrary operator A (\(=\alpha _{pq}^{\circ }\) or \(\mu _r^{\circ }\)) are represented using energy eigenstates m, n of the entire system as

    $$\displaystyle \begin{aligned} \langle m | A^{\circ} | n \rangle = \begin{cases} \langle m | A | n \rangle & (m=n) \\ 0 & (m \ne n) \end{cases} . \end{aligned}$$

    This is equivalent to the long-time average of 〈m|A|n〉,

    $$\displaystyle \begin{aligned} \langle m | A^{\circ} | n \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \; \langle m | A(t) | n \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \; \exp \left( \frac{i (\mathcal{E}_m - \mathcal{E}_n) t}{\hbar} \right) \langle m | A | n \rangle. \end{aligned}$$

    Note that A is commutative with \(\mathcal {H}\), and thus \(A^{\circ } (t) = \exp (i \mathcal {H} t/\hbar ) A^{\circ } \exp (-i\mathcal {H} t/\hbar ) = A^{\circ }\).

  4. 4.

    In the classical mechanics, the distinction between quantum average 〈A〉 and statistical average \(\overline { A }\) in Sect. 3.1 disappears. Accordingly the classical time correlation function 〈A(t)Bcl is equivalent to \(\overline { A(t) B }\).

  5. 5.

    Here we denote time correlation function by angle bracket 〈A〉 and orientational average by over-bar \(\overline { A }\). In the classical mechanics, both notations 〈A〉 and \(\overline {A}\) indicate the statistical average and thus they are essentially equivalent in this context.

Bibliography

  1. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, Oxford

    Google Scholar 

  2. Atkins PW, Friedman RS (2010) Molecular quantum mechanics, 5th edn. Oxford University Press, Oxford

    Google Scholar 

  3. Bader JS, Berne BJ (1994) Quantum and classical relaxation rates from classical simulations. J Chem Phys 100:8359–8366

    Google Scholar 

  4. Buch V, Tarbuck T, Richmond GL, Groenzin H, Li I, Shultz MJ (2007) Sum frequency generation surface spectra of ice, water, and acid solution investigated by an exciton model. J Chem Phys 127:204710

    Google Scholar 

  5. Egorov SA, Everitt KF, Skinner JL (1999) Quantum dynamics and vibrational relaxation. J Phys Chem A 103:9494–9499

    Google Scholar 

  6. Frenkel D, Smit B (1996) Understanding molecular simulation. Academic, New York

    Google Scholar 

  7. Gan W, Wu B-H, Zhang Z, Guo Y, Wang H-F (2007) Vibrational spectra and molecular orientation with experimental configuration analysis in surface sum frequency generation (SFG). J Phys Chem C 111:8716–8725

    Google Scholar 

  8. Hirose C, Akamatsu A, Domen K (1992) Formulas for the analysis of surface sum-frequency generation spectrum by CH stretching modes of methyl and methylene groups. J Chem Phys 96:997–1004

    Google Scholar 

  9. Hirose C, Hiroyoshi Y, Akamatsu N, Domen K (1993) Orientation analysis by simulation of vibrational sum frequency generation spectrum: CH stretching bands of the methyl group. J Phys Chem 97:10064–10069

    Google Scholar 

  10. Ishihara T, Ishiyama T, Morita A (2015) Surface structure of methanol/water solutions via sum-frequency orientational analysis and molecular dynamics simulation. J Phys Chem C 119:9879–9889

    Google Scholar 

  11. Ishiyama T, Morita A (2006) Intermolecular correlation effect in sum frequency generation spectroscopy of electrolyte aqueous solution. Chem Phys Lett 431:78–82

    Google Scholar 

  12. Ishiyama T, Morita A (2007) Molecular dynamics study of gas-liquid aqueous sodium halide interfaces II. analysis of vibrational sum frequency generation spectra. J Phys Chem C 111:738–748

    Google Scholar 

  13. Kubo R, Toda M, Hashitsume N (1991) Statistical mechanics II: nonequilibrium statistical mechanics, 2nd edn. Springer, Berlin

    Google Scholar 

  14. McQuarrie DA (2000) Statistical mechanics, 2nd edn. University of Science Books, Sausalito

    Google Scholar 

  15. Morita A, Hynes JT (2000) A theoretical analysis of the sum frequency generation spectrum of the water surface. Chem Phys 258:371–390

    Google Scholar 

  16. Morita A, Hynes JT (2002) A theoretical analysis of the sum frequency generation spectrum of the water surface II. Time-dependent approach. J Phys Chem B 106:673–685

    Google Scholar 

  17. Morita A, Ishiyama T (2008) Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy. Phys Chem Chem Phys 10:5801–5816

    Google Scholar 

  18. Pimentel GC, McClellan AL (1960) The Hydrogen Bond. W. H. Freemann, San Francisco

    Google Scholar 

  19. Saito K, Peng Q, Qiao L, Wang L, Joutsuka T, Ishiyama T, Ye S, Morita A (2017) Theoretical and experimental examination on SFG polarization analysis at acetonitrile-water solution surfaces. Phys Chem Chem Phys 19:8941–8961

    Article  CAS  PubMed  Google Scholar 

  20. Shultz MJ, Bisson P, Groenzin H, Li I (2010) Multiplexed polarization spectroscopy: measuring surface hyperpolarizability orientation. J Chem Phys 133:054702

    Article  PubMed  Google Scholar 

  21. Walker DS, Hore DK, Richmond GL (2006) Understanding the population, coordination, and orientation of water species contributing to the nonlinear optical spectroscopy of the vapor-water interface through molecular dynamics simulations. J Phys Chem B 110:20451–20459

    Article  CAS  PubMed  Google Scholar 

  22. Walker DS, Richmond GL (2007) Understanding the effects of hydrogen bonding at the vapor-water interface: vibrational sum frequency spectroscopy of H2O/HOD/D2O mixtures studied using molecular dynamics simulations. J Phys Chem C 111:8321–8330

    Article  CAS  Google Scholar 

  23. Wang H-F, Gan W, Lu R, Rao Y, Wu B-H (2005) Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS). Int Rev Phys Chem 24:191–256

    Article  Google Scholar 

  24. Wang L, Ishiyama T, Morita A (2017) Theoretical investigation of C-H vibrational spectroscopy. 1. Modeling of methyl and methylene groups of ethanol with different conformers. J Phys Chem A 121:6687–6700

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Ishiyama T, Morita A (2017) Theoretical investigation of C-H vibrational spectroscopy. 2. Unified assignment method of IR, Raman and SFG spectra of ethanol. J Phys Chem A 121:6701–6712

    Article  CAS  PubMed  Google Scholar 

  26. Wei X, Shen YR (2001) Motional effect in surface sum-frequency vibrational spectroscopy. Phys Rev Lett 86:4799

    Article  CAS  PubMed  Google Scholar 

  27. Yeh YL, Zhang C, Held H, Mebel AM, Wei X, Lin SH, Shen Y (2001) Structure of the acetone liquid/vapor interface. J Chem Phys 114:1837–1843

    Article  CAS  Google Scholar 

  28. Zhang D, Gutow J, Eisenthal KB (1994) Vibrational spectra, orientations, and phase transitions in long-chain amphiphiles at the air/water interface: probing the head and tail groups by sum frequency generation. J Phys Chem 98:13729–13734

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morita, A. (2018). Two Computational Schemes of χ (2) . In: Theory of Sum Frequency Generation Spectroscopy. Lecture Notes in Chemistry, vol 97. Springer, Singapore. https://doi.org/10.1007/978-981-13-1607-4_4

Download citation

Publish with us

Policies and ethics