Skip to main content

Small Signal Stability Enhancement of Power System by Modified GWO-Optimized UPFC-Based PI-Lead-Lag Controller

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Abstract

A major decisive task in power system stability enhancement is optimal setting of damping controller parameters. This work proposes small signal stability enhancement of power system using UPFC-based optimal PI-lead-lag controller, whose parameters are optimized by modified Grey Wolf Optimizer technique. Lead-lag structure has been very much popular in UPFC damping controller design but in this work the efficacy of lead-lag controller has been improved by proportional–integral (PI) structure. The modified GWO technique proposed here has been compared with GWO-optimized lead-lag controller and PSO, DE-optimized PI-lead-lag controller to justify its supremacy. ITAE criterion is selected for minimization problem considering an increase in input mechanical power to generator. The system eigenvalues, speed and line power deviations subjected to disturbance in power system show that the proposed PI-lead-lag controller performs better than conventional lead-lag controller and is much better in comparison to other optimization techniques to tune the controller parameters for enhancing stability of power system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kundur, P.: Power System Stability and Control. McGraw-Hill, New York (1994)

    Google Scholar 

  2. Keri, A.J.F., Lombard, X., Edris, A.A.: Unified power flow controller: modeling and analysis. IEEE Trans. Power Deliv. 14(2), 648–654 (1999)

    Article  Google Scholar 

  3. Li, G., Lie, T., Shrestha, G., Lo, K.: Implementation of coordinated multiple facts controllers for damping oscillations. Int. J. Electr. Power Energy Syst. 22, 79–92 (2000)

    Article  Google Scholar 

  4. Eslami, M., Shareef, H., Khajehzadeh, M.: Optimal design of damping controllers using a new hybrid artificial bee colony algorithm. Int. J. Electr. Power Energy Syst. 52, 42–54 (2013)

    Article  Google Scholar 

  5. Eslami, M., Shareef, H., Mohamed, A., Khajehzadeh, M.: Particle swarm optimization for simultaneous tuning of static var compensator and power system stabilizer. Przeglad Elektrotechniczny 87, 343–347 (2011)

    Google Scholar 

  6. Abido, M.: Parameter optimization of multimachine power system stabilizers using genetic local search. Int. J. Electr. Power Energy Syst. 23, 785–794 (2001)

    Article  Google Scholar 

  7. Zhang, P., Messina, A.R., Coonick, A., Cory, B.J.: Selection of locations and input signals for multiple SVC damping controllers in large scale power systems. In: Proceedings of IEEE power engineering society winter meeting, pp. 667–70. (1998). paper IEEE-0-7803-4403-0

    Google Scholar 

  8. Farsangi, M.M., Song, Y.H., Lee, K.Y.: Choice of FACTS devices control inputs for damping inter area oscillations. IEEE Trans. Power Syst. 19(2), 1135–1143 (2004)

    Article  Google Scholar 

  9. Zhao, Q., Jiang, J.: Robust SVC controller design for improving power system damping. IEEE Trans Energy Convers. 10, 201–209 (1995)

    Article  Google Scholar 

  10. Wang, H.F.: A unified model for the analysis of FACTS devices in damping power system oscillations––part III: unified power flow controller. IEEE Trans. Power Deliv. 15(3), 978–983 (2000)

    Article  Google Scholar 

  11. Tambey, N., Kothari, M.L.: Damping of power system oscillations with unified power flow controller (UPFC). IEE Proc. Gener. Trans. Distrib. 150, 129–140 (2003)

    Article  Google Scholar 

  12. Taher, S.A., Hemmati, R., Abdolalipou,r A., Akbari, S.: Comparison of different robust control methods in the design of decentralized UPFC controllers. Int. J. Electr. Power Energy Syst. 43, 173–84 (2012)

    Google Scholar 

  13. Ali, T., Al-Awami,Y.L., Abdel-Magid, M.A., Abido.: A particle-swarm-based approach of power system stability enhancement with unified power flow controller. Int. J. Electr. Power Energy Syst. 29, 251–259 (2007)

    Google Scholar 

  14. Shayeghi, H., Shayanfar, H.A., Jalilzadeh, S., Safari, A.: Design of output feedback UPFC controller for damping of electromechanical oscillations using PSO. Energy Conver. Manag. 50 2554–2561 (2009)

    Article  Google Scholar 

  15. Shaheen, H.I., Rashed, G.I., Cheng, S.J.: Optimal location and parameter setting of UPFC for enhancing power system security based on differential evolution algorithm. Electr. Power Energy Syst. 33 94–105 (2011)

    Article  Google Scholar 

  16. Sakra, W.S., EL-Sehiemya, R.A., Azmyb, A.M.: Adaptive differential evolution algorithm for efficient reactive power management. Appl. Soft Comput. 53 336–351 (2017)

    Article  Google Scholar 

  17. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf Optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  18. Mallick, R.K., Nahak, N.: Grey wolves-based optimization technique for tuning damping controller parameters of unified power flow controller. In: IEEE International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016, pp. 1458–1463

    Google Scholar 

  19. Khadanga, R.K., Satapathy, J.K.: A new hybrid GA–GSA algorithm for tuning damping controller parameters for a unified power flow controller. Electr. Power Energy Syst. 73, 1060–1069 (2015)

    Article  Google Scholar 

  20. Nahak, N., Mallick, R.K.: Damping of power system oscillations by a novel DE-GWO optimized dual UPFC controller. Eng. Sci. Technol. Int. J. 20(4), 1275–1284 (2017)

    Article  Google Scholar 

  21. Muangkote, N., Sunat, K., Chiewchanwattana, S.: An improved grey wolf optimizer for training q-Gaussian radial basis functional-link nets. In: International Computer Science and Engineering Conference (ICSEC) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Kumar Mallick .

Editor information

Editors and Affiliations

Appendix

Appendix

(All the data are in per unit unless mentioned except constants)

Single-machine infinite bus test system data

$$ \begin{array}{*{20}l} {{\mathrm{C}}_{\mathrm{dc}} = 1,\, {\mathrm{H}} = 4{\mathrm{MJ}}/{\mathrm{MVA}}, {\mathrm{Ka}} = 100,\,{\mathrm{Ta}} = 0.01,\,{\mathrm{T}}_{\mathrm{d0}} = 5.044\,{s},\,{\mathrm{D}} = 0, \,\updelta_{0} = 47.13^{0},\,{\mathrm{V}}_{\mathrm{b}} = 1, \, } \hfill \\ {{\mathrm{V}}_{\mathrm{dc}} = 2,\,{\mathrm{V}}_{\mathrm{t}} = 1,\,{\mathrm{X}}_{\mathrm{B}} = {\mathrm{X}}_{\mathrm{E}} = 0.1,\,{\mathrm{X}}_{\mathrm{BV}} = 0.3,\,{\mathrm{X}}_{\mathrm{d}} = 1,\,{\mathrm{X}}_{\mathrm{E}} = 0.1,\,{\mathrm{X}}_{\mathrm{d}}^{{\prime }} = 0.3,\,{\mathrm{X}}_{\mathrm{q}} = 0.6,\,{\mathrm{Xe}} = 0.5} \hfill \\ \end{array} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nahak, N., Sahoo, S.R., Mallick, R.K. (2019). Small Signal Stability Enhancement of Power System by Modified GWO-Optimized UPFC-Based PI-Lead-Lag Controller. In: Bansal, J., Das, K., Nagar, A., Deep, K., Ojha, A. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 817. Springer, Singapore. https://doi.org/10.1007/978-981-13-1595-4_21

Download citation

Publish with us

Policies and ethics