Skip to main content

Arsenite S-Adenosylmethionine-Producing Spirulina platensis: A New Trump Card on the Face of Global Arsenic Poisoning

  • Chapter
  • First Online:
The Role of Microalgae in Wastewater Treatment

Abstract

Arsenic is a gray-appearing metalloid which occurs naturally and is the 20th most prolific element in the earth’s crust. It is an integral part of more than 200 minerals. These are mostly ores containing sulfides, along with copper, nickel, lead, and other metals. In the environment, arsenic and its compounds are very mobile. Although in its organic form arsenic is nontoxic, it is highly toxic in its inorganic form (arsenite, a free form of arsenic) with arsine gas being the most fatal. The World Health Organization recommends a concentration below 20 mg/l for an individual to be considered free of arsenic poisoning. Accumulation of arsenic in the body beyond this level could adversely affect human health. An individual suffering from chronic arsenic poisoning via contaminated water could suffer from severe skin-related ailments like melanosis (pigmentation of the skin), keratosis (associated with the formation of rough, dry, and popular skin lesions), and leucomelanosis (also known as spotted melanosis) ultimately leading to arsenicosis in the long term. Other than that arsenic poisoning also may lead to other manifestations like neurological disorders, diabetes mellitus, high blood pressure, obstetric problems, disorders of the respiratory system, and cancer in the lung, skin, and bladder. The Indian subcontinent is very rich in arsenic, and countries like India and Bangladesh are a disaster waiting to happen. West Bengal, India, is a state severely affected by arsenic-contaminated water, and a case study showed an astounding 16 sites from one single village with very high concentrations of arsenic. As such, it is the need of the hour for governments to be ready with an immediate action plan to tackle such large-scale disasters. Existing solutions to this problem include phytoremediation via hyperaccumulation with plants like Pteris vittata and grasses like A. delicatula and use of phosphate-based fertilizers. However, a long-term use of phosphate-based fertilizers may ultimately lead to an algal bloom in water bodies, and phytoremediation is a time-consuming process. Planktons, however, have the potential to be a game changer in tackling arsenic-contaminated water bodies by virtue of accumulation and bioremediation. Spirulina platensis, a typical plankton, produces an enzyme called arsenite S-adenosylmethionine methyltransferase which has the ability to methylate arsenic making it nontoxic. This enzyme confers Spirulina platensis the unique ability to convert the toxic trivalent arsenic to its nontoxic pentavalent form. Spirulina platensis produces this enzyme by the virtue of arsenite S-adenosylmethionine methyltransferase (SpArsM) gene.

Isolation and overexpression study of this gene in a heterologous host like E. coli followed by pilot-scale study ultimately leading to the industrial mass production of this enzyme is an unexplored and untapped area which has a huge potential to tackle the menace of arsenic contamination in water bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahar MM, Megharaj M, Naidu R (2013) Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp. isolated from soil. J Appl Phycol 25:913–917. https://doi.org/10.1007/s10811-012-9923-0

    Article  CAS  Google Scholar 

  2. Cullen WR (2008) Is arsenic an aphrodisiac? Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764. https://doi.org/10.1021/cr00094a002

    Article  CAS  Google Scholar 

  4. Fujiwara S, Kobayashi I, Hoshino S et al (2000) Isolation and characterization of arsenate-sensitive and resistant mutants of Chlamydomonas reinhardtii. Plant Cell Physiol 41:77–83

    Article  CAS  Google Scholar 

  5. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  6. Shen S, Li XF, Cullen WR et al (2013) Arsenic binding to proteins. Chem Rev 113:7769–7792. https://doi.org/10.1021/cr300015c

    Article  CAS  Google Scholar 

  7. WHO (World Health Organization) (1999) Fact sheet No 210: Arsenic in Drinking Water

    Google Scholar 

  8. Mandal B (2002) Arsenic round the world: a review. Talanta 58:201–235. https://doi.org/10.1016/S0039-9140(02)00268-0

    Article  CAS  Google Scholar 

  9. Paikaray S (2012) Environmental hazards of arsenic associated with black shales: a review on geochemistry, enrichment and leaching mechanism. Rev Environ Sci Biotechnol 11:289–303. https://doi.org/10.1007/s11157-012-9281-z

    Article  CAS  Google Scholar 

  10. Villaescusa I, Bollinger J-C (2008) Arsenic in drinking water: sources, occurrence and health effects (a review). Rev Environ Sci Biotechnol 7:307–323

    Article  CAS  Google Scholar 

  11. Aurilio AC, Mason RP, Hemond HF (1994) Speciation and fate of arsenic in three lakes of the Aberjona Watershed. Environ Sci Technol 28:577–585. https://doi.org/10.1021/es00053a008

    Article  CAS  Google Scholar 

  12. Duncan EG, Maher WA, Foster SD (2015) Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems. Environ Sci Technol 49:33–50. https://doi.org/10.1021/es504074z

    Article  CAS  Google Scholar 

  13. Lee RE (2008) Phycology, 4th edn. Cambridge University Press, New York

    Book  Google Scholar 

  14. Maeda S, Mawatari K, Ohki A, Naka K (1993) Arsenic metabolism in a freshwater food chain: blue???Green alga (Nostoc sp.)??? Shrimp (Neocaridina denticulata)??? Carp (Cyprinus carpio). Appl Organomet Chem 7:467–476. https://doi.org/10.1002/aoc.590070705

    Article  CAS  Google Scholar 

  15. Maeda S, Ohki A, Tokuda T, Ohmine M (1990) Transformation of arsenic compounds in a freshwater food chain. Appl Organomet Chem 4:251–254. https://doi.org/10.1002/aoc.590040312

    Article  CAS  Google Scholar 

  16. Wang P, Sun G, Jia Y et al (2014) A review on completing arsenic biogeochemical cycle: microbial volatilization of arsines in environment. J Environ Sci (China) 26:371–381. https://doi.org/10.1016/S1001-0742(13)60432-5

    Article  Google Scholar 

  17. Smedley PL, Nicolli HB, Macdonald DMJ et al (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La pampa, Argentina. Appl Geochem 17:259–284. https://doi.org/10.1016/S0883-2927(01)00082-8

    Article  CAS  Google Scholar 

  18. Kinniburgh D, Smedley P (2001) Arsenic contamination of groundwater in Bangladesh. Br Geol Surv Keyworth, U K 1:255. British Geological Survey Report WC/00/19

    Google Scholar 

  19. Central Ground Water Board I (1999) Incidence of arsenic in groundwater in West Bengal

    Google Scholar 

  20. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103. https://doi.org/10.1590/S0042-96862000000900005

    Article  CAS  Google Scholar 

  21. Tseng WP, Chu HM, How SW et al (1968) Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40:453–463. https://doi.org/10.1093/jnci/40.3.453

    Article  CAS  Google Scholar 

  22. Hsu K-H, Froines JR, Chen C-J (1997) tudies of arsenic ingestion from drinking water in Northeastern Taiwan: Chemical speciation and urinary metabolites. In: Abernathy CO, Calderson RL, Chappell WR (eds) Arsen Expo Heal Eff. Chapman Hall, London, pp 190–209

    Google Scholar 

  23. Kuo T-L (1968) Arsenic content of artesian well water in endemic area of chronic arsenic poisoning. Rep Inst Pathol Natl Taiwan Univ 20:7–13

    Google Scholar 

  24. Guo H-R, Chen C-J, Greene HL (1994) Arsenic in drinking water and cancers: A brief descriptive review of Taiwan studies. In: Chappell WR, Abernathy CO, Cothern CR (eds) Arsen Expo Heal Northwood, Sci Technol Lett, pp 129–138

    Google Scholar 

  25. Luo ZD, Zhang YM, Ma L et al (1997) Chronic arsenicism and cancer in Inner Mongolia-consequences of well-water arsenic levels greater than 5 ug 1. In: Abernathy CO, Calderon RL, Chappell WR (eds) Arsen Expo Heal Eff. Chapman Hall, London, pp 55–68

    Google Scholar 

  26. Ma HZ, Xia YJ, Wu KG et al (1999) Arsenic exposure and health effects in Bayingnormen, Inner Mongolia. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsen Expo Heal Eff. Elsevier, Amsterdam, pp 127–131

    Google Scholar 

  27. Takeuchi M, Kawahata H, Gupta LP et al (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127:434–442. https://doi.org/10.1016/j.jbiotec.2006.07.018

    Article  CAS  Google Scholar 

  28. Berg M, Tran HC, Nguyen TC et al (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ Sci Technol 35:2621–2626

    Article  CAS  Google Scholar 

  29. Gurzau E, Gurzau A (2001) Arsenic in drinking water from groundwater in Transylvania, Romania: an overview. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsen Expo Heal Eff, pp 181–184

    Google Scholar 

  30. Del Razo LM, Arellano MA, Cebrián ME (1990) The oxidation states of arsenic in well-water from a chronic arsenicism area of northern Mexico. Environ Pollut 64:143–153. https://doi.org/10.1016/0269-7491(90)90111-O

    Article  Google Scholar 

  31. Smith AH (1998) Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water

    Google Scholar 

  32. Nicolli HB, Suriano JM, Gomez Peral MA et al (1989) Groundwater contamination with arsenic and other trace elements in an area of the pampa, province of C??Rdoba. Argentina Environ Geol Water Sci 14:3–16. https://doi.org/10.1007/BF01740581

    Article  CAS  Google Scholar 

  33. Fujii R, Swain WC (1995) Areal distribution of selected trace elements, salinity, and major ions in shallow ground water, Tulare Basin, Southern San Joaquin Valley, California

    Google Scholar 

  34. Robertson FN (1989) Arsenic in ground-water under oxidizing conditions, south-West United States. Environ Geochem Health 11:171–185. https://doi.org/10.1007/BF01758668

    Article  CAS  Google Scholar 

  35. Hindmarsh J, McCurdy R (1986) Clinical and environmental aspects of arsenic toxicity. CRC Crit Rev Clin Lab Sci 23:315–347

    Article  CAS  Google Scholar 

  36. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139. https://doi.org/10.1038/333134a0

    Article  CAS  Google Scholar 

  37. Vallee BL, Ulmer DD, Wacker WEC (1960) Arsenic toxicology and biochemistry. J Occup Environ Med 2:358

    Article  Google Scholar 

  38. Borba RP, Figueiredo BR, Matschullat J (2003) Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron quadrangle. Brazil Environ Geol 44:39–52. https://doi.org/10.1007/s00254-003-0766-5

    Article  CAS  Google Scholar 

  39. Andreae MO (1980) Arsenic in rain and the atmospheric mass balance of arsenic. J Geophys Res 85:4512. https://doi.org/10.1029/JC085iC08p04512

    Article  CAS  Google Scholar 

  40. Crecelius EA (1975) The geochemical cycle of arsenic in Lake Washington and its relation to other elements. Limnol Oceanogr 20:441–451. https://doi.org/10.4319/lo.1975.20.3.0441

    Article  CAS  Google Scholar 

  41. Nimick DA, Moore JN, Dalby CE, Savka MW (1998) The fate of geothermal arsenic in the Madison and Missouri rivers, Montana and Wyoming. Water Resour Res 34:3051–3067. https://doi.org/10.1029/98WR01704

    Article  CAS  Google Scholar 

  42. Wilkie JA, Hering J (1998) Rapid oxidation of geothermal arsenic (III) in streamwaters of the eastern Sierra Nevada

    Google Scholar 

  43. Andreae MO, Andreae TW (1989) Dissolved arsenic species in the Schelde estuary and watershed. Belgium Estuar Coast Shelf Sci 29:421–433. https://doi.org/10.1016/0272-7714(89)90077-2

    Article  CAS  Google Scholar 

  44. Smedley PL (1996) Arsenic in rural groundwater in GhanaPart special issue: Hydrogeochemical studies in sub-saharan Africa. J Afr Earth Sci 22:459–470. https://doi.org/10.1016/0899-5362(96)00023-1

    Article  CAS  Google Scholar 

  45. Williams M, Fordyce F, Paijitprapapon A, Charoenchaisri P (1996) Arsenic contamination in surface drainage and groundwater in part of the southeast Asian tin belt, Nakhon si Thammarat Province. southern Thailand Environ Geol 27:16–33. https://doi.org/10.1007/s002540050024

    Article  CAS  Google Scholar 

  46. Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ Sci Technol 34:254–258. https://doi.org/10.1021/es990646v

    Article  CAS  Google Scholar 

  47. Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain superfund site. California Proc Natl Acad Sci 96:3455–3462. https://doi.org/10.1073/pnas.96.7.3455

    Article  CAS  Google Scholar 

  48. White DE, Hem JD, Waring GA (1963) Chemical composition of subsurface waters. U S Geol Surv Prof Pap 440–F:1–67

    Google Scholar 

  49. Lazarević K, Nikolić D, Stosić L et al (2012) Determination of lead and arsenic in tobacco and cigarettes: an important issue of public health. Cent Eur J Public Health 20:62–66

    Article  Google Scholar 

  50. Chen C-J, Hsueh Y-M, Lai M-S et al (1995) Increased prevalence of hypertension and long-term arsenic exposure. Hypertension 25:53–60. https://doi.org/10.1161/01.HYP.25.1.53

    Article  Google Scholar 

  51. Chen CJ, Chiou HY, Chiang MH et al (1996) Dose-response relationship between ischemic heart disease mortality and long-term arsenic exposure. Arterioscler Thromb Vasc Biol 16:504–510

    Article  CAS  Google Scholar 

  52. Hansen ES (1990) Shared risk factors for cancer and atherosclerosis-a review of the epidemiological evidence. Mutat Res Genet Toxicol 239:163–179. https://doi.org/10.1016/0165-1110(90)90004-U

    Article  CAS  Google Scholar 

  53. Barchowsky A, Klei LR, Dudek EJ et al (1999) Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med 27:1405–1412. https://doi.org/10.1016/S0891-5849(99)00186-0

    Article  CAS  Google Scholar 

  54. Smith KR, Klei LR, Barchowsky A (2001) Arsenite stimulates plasma membrane NADPH oxidase in vascular endothelial cells. Am J Phys Lung Cell Mol Phys 280:L442–L449

    CAS  Google Scholar 

  55. Bunderson M, Coffin JD, Beall HD (2002) Arsenic induces peroxynitrite generation and cyclooxygenase-2 protein expression in aortic endothelial cells: possible role in atherosclerosis. Toxicol Appl Pharmacol 184:11–18. https://doi.org/10.1016/S0041-008X(02)99492-5

    Article  CAS  Google Scholar 

  56. Lee PC, Ho IC, Lee TC (2005b) Oxidative stress mediates sodium arsenite-induced expression of heme oxygenase-1, monocyte chemoattractant protein-1, and interleukin-6 in vascular smooth muscle cells. Toxicol Sci 85:541–550. https://doi.org/10.1093/toxsci/kfi101

    Article  CAS  Google Scholar 

  57. Lee MY, Lee YH, Lim KM et al (2005a) Inorganic arsenite potentiates vasoconstriction through calcium sensitization in vascular smooth muscle. Environ Health Perspect 113:1330–1335. https://doi.org/10.1289/ehp.8000

    Article  CAS  Google Scholar 

  58. Cifuentes F, Bravo J, Norambuena M et al (2009) Chronic exposure to arsenic in tap water reduces acetylcholine-induced relaxation in the aorta and increases oxidative stress in female rats. Int J Toxicol 28:534–541. https://doi.org/10.1177/1091581809345924

    Article  CAS  Google Scholar 

  59. Wauson EM, Langan AS, Vorce RL (2002) Sodium arsenite inhibits and reverses expression of adipogenic and fat cell-specific genes during in vitro adipogenesis. Toxicol Sci 65:211–219. https://doi.org/10.1093/toxsci/65.2.211

    Article  CAS  Google Scholar 

  60. Tseng CH (2004) The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicol Appl Pharmacol 197:67–83

    Article  CAS  Google Scholar 

  61. Pal S, Chatterjee AK (2005) Prospective protective role of melatonin against arsenic-induced metabolic toxicity in Wistar rats. Toxicology 208:25–33. https://doi.org/10.1016/j.tox.2004.11.005

    Article  CAS  Google Scholar 

  62. Díaz-Villaseñor A, Sánchez-Soto MC, Cebrián ME et al (2006) Sodium arsenite impairs insulin secretion and transcription in pancreatic β-cells. Toxicol Appl Pharmacol 214:30–34. https://doi.org/10.1016/j.taap.2005.11.015

    Article  CAS  Google Scholar 

  63. Felix K, Manna SK, Wise K et al (2005) Low levels of arsenite activates nuclear factor-??B and activator protein-1 in immortalized mesencephalic cells. J Biochem Mol Toxicol 19:67–77. https://doi.org/10.1002/jbt.20062

    Article  CAS  Google Scholar 

  64. Gopalkrishnan A, Rao MV (2006) Amelioration by vitamin a upon arsenic induced metabolic and neurotoxic effects. J Health Sci 52:568–577. https://doi.org/10.1248/jhs.52.568

    Article  CAS  Google Scholar 

  65. Piao F, Ma N, Hiraku Y et al (2005) Oxidative DNA damage in relation to neurotoxicity in the brain of mice exposed to arsenic at environmentally relevant levels. J Occup Health 47:445–449. https://doi.org/10.1539/joh.47.445

    Article  CAS  Google Scholar 

  66. Vahidnia A, Romijn F, Tiller M et al (2006) Arsenic-induced toxicity: effect on protein composition in sciatic nerve. Hum Exp Toxicol 25:667–674. https://doi.org/10.1177/0960327106070671

    Article  CAS  Google Scholar 

  67. Yip SF, Yeung YM, Tsui EYK (2002) Severe neurotoxicity following arsenic therapy for acute promyelocytic leukemia: potentiation by thiamine deficiency [4]. Blood 99:3481–3482. https://doi.org/10.1182/blood-2001-12-0325

    Article  CAS  Google Scholar 

  68. Dwivedi N, Flora SJS (2011) Concomitant exposure to arsenic and organophosphates on tissue oxidative stress in rats. Food Chem Toxicol 49:1152–1159. https://doi.org/10.1016/j.fct.2011.02.007

    Article  CAS  Google Scholar 

  69. Yadav RS, Shukla RK, Sankhwar ML et al (2010) Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats. Neurotoxicology 31:533–539. https://doi.org/10.1016/j.neuro.2010.05.001

    Article  CAS  Google Scholar 

  70. Namgung U, Xia Z (2001) Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol Appl Pharmacol 174:130–138. https://doi.org/10.1006/taap.2001.9200

    Article  CAS  Google Scholar 

  71. Parrish AR, Zheng XH, Turney KD et al (1999) Enhanced transcription factor DNA binding and gene expression induced by arsenite or arsenate in renal slices. Toxicol Sci 50:98–105. https://doi.org/10.1093/toxsci/50.1.98

    Article  CAS  Google Scholar 

  72. Sasaki A, Oshima Y, Fujimura A (2007) An approach to elucidate potential mechanism of renal toxicity of arsenic trioxide. Exp Hematol 35:252–262. https://doi.org/10.1016/j.exphem.2006.10.004

    Article  CAS  Google Scholar 

  73. Nandi D, Patra RC, Swarup D (2006) Oxidative stress indices and plasma biochemical parameters during oral exposure to arsenic in rats. Food Chem Toxicol 44:1579–1584. https://doi.org/10.1016/j.fct.2006.04.013

    Article  CAS  Google Scholar 

  74. Bashir S, Sharma Y, Irshad M et al (2006) Arsenic induced apoptosis in rat liver following repeated 60 days exposure. Toxicology 217:63–70. https://doi.org/10.1016/j.tox.2005.08.023

    Article  CAS  Google Scholar 

  75. Jain A, Yadav A, Bozhkov AI et al (2011) Therapeutic efficacy of silymarin and naringenin in reducing arsenic-induced hepatic damage in young rats. Ecotoxicol Environ Saf 74:607–614. https://doi.org/10.1016/j.ecoenv.2010.08.002

    Article  CAS  Google Scholar 

  76. Suzuki T, Tsukamoto I (2006) Arsenite induces apoptosis in hepatocytes through an enhancement of the activation of Jun N-terminal kinase and p38 mitogen-activated protein kinase caused by partial hepatectomy. Toxicol Lett 165:257–264. https://doi.org/10.1016/j.toxlet.2006.05.004

    Article  CAS  Google Scholar 

  77. Flora SJS, Mehta A, Gupta R (2009) Prevention of arsenic-induced hepatic apoptosis by concomitant administration of garlic extracts in mice. Chem Biol Interact 177:227–233. https://doi.org/10.1016/j.cbi.2008.08.017

    Article  CAS  Google Scholar 

  78. Li GX, ling PQ, Gao Y et al (2007) Protective effects of hepatocellular canalicular conjugate export pump (Mrp2) on sodium arsenite-induced hepatic dysfunction in rats. Exp Toxicol Pathol 58:447–453. https://doi.org/10.1016/j.etp.2007.02.001

    Article  CAS  Google Scholar 

  79. TE R, Y H, A T et al (2003) Central organization of mamalian pyruvate dehydrogenase (PD) complex and lipoyl domain-mediated function and control of PD kinases and phosphatase. In: Jordan F, Patel MS (eds) Thiamine: catalytic mechanisms and role in normal and disease states. Marcel Decker, New York, pp 363–386

    Google Scholar 

  80. Koike M, Koike K (1975) Structure, assembly and function of mammalian alpha-keto acid dehydrogenase complexes. Adv Biophys 9:187–227

    Google Scholar 

  81. Cheng HY, Li P, David M et al (2004) Arsenic inhibition of the JAK-STAT pathway. Oncogene 23:3603–3612. https://doi.org/10.1038/sj.onc.1207466

    Article  CAS  Google Scholar 

  82. CRANE RK, LIPMANN F (1953) The effect of arsenate on aerobic phosphorylation. J Biol Chem 201:235–243

    CAS  Google Scholar 

  83. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396. https://doi.org/10.1136/pmj.79.933.391

    Article  CAS  Google Scholar 

  84. Dixon HBF (1996) The biochemical action of Arsonic acids especially as phosphate analogues. Adv Inorg Chem 44:191–227. https://doi.org/10.1016/S0898-8838(08)60131-2

    Article  Google Scholar 

  85. Lagunas R (1980) Sugar-arsenate esters: thermodynamics and biochemical behavior. Arch Biochem Biophys 205:67–75. https://doi.org/10.1016/0003-9861(80)90084-3

    Article  CAS  Google Scholar 

  86. Gresser MJ (1981) ADP-arsenate. Formation by submitochondrial particles under phosphorylating conditions. J Biol Chem 256:5981–5983

    CAS  Google Scholar 

  87. Kenney LJ, Kaplan JH (1988) Arsenate substitutes for phosphate in the human red cell sodium pump and anion exchanger. J Biol Chem 263:7954–7960

    CAS  Google Scholar 

  88. Aposhian H V (1989) Biochemical toxicology of arsenic. In: Hodgson E, Bend JR, Philpot RM, pp 265–300

    Google Scholar 

  89. Delnomdedieu M, Basti MM, Styblo M et al (1994b) Complexation of arsenic species in rabbit erythrocytes. Chem Res Toxicol 7:621–627. https://doi.org/10.1021/tx00041a006

    Article  CAS  Google Scholar 

  90. Winski SL, Carter DE (1998) Arsenate toxicity in human erythrocytes: characterization of morphologic changes and determination of the mechanism of damage. J Toxicol Env Heal A 53:345–355. https://doi.org/10.1080/009841098159213

    Article  CAS  Google Scholar 

  91. Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1994a) Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study. Chem Biol Interact 90:139–155. https://doi.org/10.1016/0009-2797(94)90099-X

    Article  CAS  Google Scholar 

  92. Scott N, Hatlelid KM, MacKenzie NE, Carter DE (1993) Reactions of arsenic (III) and arsenic (V) species with glutathione. Chem Res Toxicol 6:102–106

    Article  CAS  Google Scholar 

  93. Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1993) Transfer of arsenite from glutathione to dithiols: a model of interaction. Chem Res Toxicol 6:598–602. https://doi.org/10.1021/tx00035a002

    Article  CAS  Google Scholar 

  94. Styblo M, Yamauchi H, Thomas DJ (1995) Comparative in vitro methylation of trivalent and pentavalent arsenicals. Toxicol Appl Pharmacol 135:172–178. https://doi.org/10.1006/taap.1995.1220

    Article  CAS  Google Scholar 

  95. Lin S, Cullen WR, Thomas DJ (1999) Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chem Res Toxicol 12:924–930. https://doi.org/10.1021/tx9900775

    Article  CAS  Google Scholar 

  96. Styblo M, Serves SV, Cullen WR, Thomas DJ (1997) Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol 10:27–33. https://doi.org/10.1021/tx960139g

    Article  CAS  Google Scholar 

  97. Das D, Chatterjee A, Mandal BK et al (1995) Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people. Analyst 120:917. https://doi.org/10.1039/an9952000917

    Article  CAS  Google Scholar 

  98. Benramdane L, Accominotti M, Fanton L et al (1999) Arsenic speciation in human organs following fatal arsenic trioxide poisoning – a case report. Clin Chem 45:301–306

    CAS  Google Scholar 

  99. Rahman MM, Chowdhury UK, Mukherjee SC et al (2001) Chronic arsenic toxicity in Bangladesh and West Bengal, India—a review and commentary. J Toxicol Clin Toxicol 39:683–700. https://doi.org/10.1081/CLT-100108509

    Article  CAS  Google Scholar 

  100. Liu J, Zheng B, Aposhian HV et al (2002) Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou. China Environ Health Perspect 110:119–122. https://doi.org/10.1289/ehp.02110119

    Article  Google Scholar 

  101. Vitayavirasak B, Rakwong K, Chatchawej W (2005) Environmental arsenic exposure of schoolchildren in a former tin mining and smelting community of southern Thailand. Environ Sci 12:195–205

    CAS  Google Scholar 

  102. Ferreccio C, Sancha AM (2006) Arsenic exposure and its impact on health in Chile. J Health Popul Nutr 24:164–175. https://doi.org/10.2307/23499354

    Article  Google Scholar 

  103. Pokhrel D, Bhandari BS, Viraraghavan T (2009) Arsenic contamination of groundwater in the Terai region of Nepal: an overview of health concerns and treatment options. Environ Int 35:157–161 S0160-4120(08)00107-4 [pii]\r10.1016/j.envint.2008.06.003

    Article  CAS  Google Scholar 

  104. Keshavarzi B, Seradj A, Akbari Z et al (2015) Chronic arsenic toxicity in sheep of Kurdistan Province. Western Iran Arch Environ Contam Toxicol 69:44–53. https://doi.org/10.1007/s00244-015-0157-4

    Article  CAS  Google Scholar 

  105. Kulasooriya SA (2011) Cyanobacteria : pioneers of planet earth. Ceylon J Sci 40:71–88

    Google Scholar 

  106. Singh M, Sharma NK, Prasad SB et al (2013) The freshwater cyanobacterium anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity, but became halophilic. Microbiol (United Kingdom) 159:641–648. https://doi.org/10.1099/mic.0.065078-0

    Article  CAS  Google Scholar 

  107. Zhang M, Shi X, Yu Y, Kong F (2011) The acclimative changes in photochemistry after colony formation of the cyanobacteria Microcystis aeruginosa. J Phycol 47:524–532. https://doi.org/10.1111/j.1529-8817.2011.00987.x

    Article  Google Scholar 

  108. Sabart M, Pobel D, Briand E et al (2010) Spatiotemporal variations in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. Appl Environ Microbiol 76:4750–4759. https://doi.org/10.1128/AEM.02531-09

    Article  CAS  Google Scholar 

  109. Kazmierczak J, Altermann W, Kremer B et al (2009) Mass occurrence of benthic coccoid cyanobacteria and their role in the production of Neoarchean carbonates of South Africa. Precambrian Res 173:79–92. https://doi.org/10.1016/j.precamres.2009.02.002

    Article  CAS  Google Scholar 

  110. Morin N, Vallaeys T, Hendrickx L et al (2010) An efficient DNA isolation protocol for filamentous cyanobacteria of the genus Arthrospira. J Microbiol Methods 80:148–154. https://doi.org/10.1016/j.mimet.2009.11.012

    Article  CAS  Google Scholar 

  111. Koksharova OA, Wolk CP (2002) Genetic tools for cyanobacteria. Appl Microbiol Biotechnol 58:123–137. https://doi.org/10.1007/s00253-001-0864-9

    Article  CAS  Google Scholar 

  112. Wada N, Sakamoto T, Matsugo S (2013) Multiple roles of photosynthetic and sunscreen pigments in cyanobacteria focusing on the oxidative stress. Meta 3:463–483. https://doi.org/10.3390/metabo3020463

    Article  CAS  Google Scholar 

  113. Costa M, Costa-Rodrigues J, Fernandes MH et al (2012) Marine cyanobacteria compounds with anticancer properties: a review on the implication of apoptosis. Mar Drugs 10:2181–2207. https://doi.org/10.3390/md10102181

    Article  CAS  Google Scholar 

  114. Rao BD (2015) Antibacterial Activity of Fresh Water Cyanobacteria Antibact Act Fresh Water Cyanobacteria ISSN 6:60–64

    Google Scholar 

  115. Mao TK, Van de WJ, Gershwin ME (2005) Effects of a Spirulina -based dietary supplement on cytokine production from allergic rhinitis patients. J Med Food 8:27–30. https://doi.org/10.1089/jmf.2005.8.27

    Article  CAS  Google Scholar 

  116. Colla LM, Oliveira Reinehr C, Reichert C, Costa JAV (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour Technol 98:1489–1493. https://doi.org/10.1016/j.biortech.2005.09.030

    Article  CAS  Google Scholar 

  117. Bhattacharya S, Shivaprakash MK (2005) Evaluation of three Spirulina species grown under similar conditions for their growth and biochemicals. J Sci Food Agric 85:333–336. https://doi.org/10.1002/jsfa.1998

    Article  CAS  Google Scholar 

  118. Cruz-Martinez LC, Jesus CKC, Matsudo MC et al (2015) Growth and composition of arthrospira (spirulina) platensis in a tubular photobioreactor using ammonium nitrate as the nitrogen source in a fed-batch process. Braz J Chem Eng 32:347–356. https://doi.org/10.1590/0104-6632.20150322s00003062

    Article  CAS  Google Scholar 

  119. Guo Y, Xue X, Yan Y et al (2016) Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina platensis. J Environ Sci (China) 49:162–168. https://doi.org/10.1016/j.jes.2016.06.013

    Article  Google Scholar 

  120. Armendariz AL, Talano MA, Wevar Oller AL et al (2015) Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. J Environ Sci (China) 33:203–210. https://doi.org/10.1016/j.jes.2014.12.024

    Article  Google Scholar 

  121. Paez-Espino D, Tamames J, De Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130. https://doi.org/10.1007/s10534-008-9195-y

    Article  CAS  Google Scholar 

  122. Stýblo M, Drobná Z, Jaspers I et al (2002) The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update. Environ Health Perspect 110:767–771. https://doi.org/10.1289/ehp.02110s5767

    Article  Google Scholar 

  123. Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271. https://doi.org/10.1128/MMBR.66.2.250-271.2002

    Article  CAS  Google Scholar 

  124. Challenger F (1945) Biological methylation. Chem Rev 36:315–361

    Article  CAS  Google Scholar 

  125. Hirano SHTKYCX (2005) A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79:183–191. https://doi.org/10.1007/s00204-004-0620-x

    Article  CAS  Google Scholar 

  126. Marapakala K, Qin J, Rosen BP (2012) Identification of catalytic residues in the As(III) S-adenosylmethionine methyltransferase. Biochemistry 51:944–951. https://doi.org/10.1021/bi201500c

    Article  CAS  Google Scholar 

  127. Katsoyiannis I, Zouboulis A, Althoff H, Bartel H (2002) As(III) removal from ground waters using fixed-bed upflow bioreactors. Chemosphere 47:325–332. https://doi.org/10.1016/S0045-6535(01)00306-X

    Article  CAS  Google Scholar 

  128. Dhankher OP, Li Y, Rosen BP et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145. https://doi.org/10.1038/nbt747

    Article  CAS  Google Scholar 

  129. Ike M, Miyazaki T, Yamamoto N et al (2008) Removal of arsenic from groundwater by arsenite-oxidizing bacteria. Water Sci Technol 58:1095–1100. https://doi.org/10.2166/wst.2008.462

    Article  CAS  Google Scholar 

  130. Tuzen M, Sarı A, Mendil D et al (2009) Characterization of biosorption process of as(III) on green algae Ulothrix cylindricum. J Hazard Mater 165:566–572

    Article  CAS  Google Scholar 

  131. Mirza N, Mahmood Q, Pervez A et al (2010) Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresour Technol 101:5815–5819. https://doi.org/10.1016/j.biortech.2010.03.012

    Article  CAS  Google Scholar 

  132. Kao A-C, Chu Y-J, Hsu F-L, Liao VH-C (2013) Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium. J Contam Hydrol 155:1–8. https://doi.org/10.1016/j.jconhyd.2013.09.001

    Article  CAS  Google Scholar 

  133. Sibi G (2014) Biosorption of arsenic by living and dried biomass of fresh water microalgae – potentials and equilibrium studies. J Bioremed Biodegr https://doi.org/10.4172/2155-6199.1000249

  134. Jasrotia S, Kansal A, Kishore VVN (2014) Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy. Microchem J 114:197–202. https://doi.org/10.1016/j.microc.2014.01.005

    Article  CAS  Google Scholar 

  135. Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Reports 10:1–7. https://doi.org/10.1016/j.btre.2016.02.002

    Article  Google Scholar 

  136. Styblo M, Delnomdedieu M, Thomas DJ (1996) Mono- and dimethylation of arsenic in rat liver cytosol in vitro. Chem Biol Interact 99:147–164

    Article  CAS  Google Scholar 

  137. Petrick JS, Ayala-Fierro F, Cullen WR et al (2000) Monomethylarsonous acid (MMAIII) is more toxic than Arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207. https://doi.org/10.1006/taap.1999.8872

    Article  CAS  Google Scholar 

  138. Styblo M, Del Razo LM, Vega L et al (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299. https://doi.org/10.1007/s002040000134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enketeswara Subudhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, A., Pattanayak, A., Sahoo, R.K., Gaur, M., Sahoo, K., Subudhi, E. (2019). Arsenite S-Adenosylmethionine-Producing Spirulina platensis: A New Trump Card on the Face of Global Arsenic Poisoning. In: Sukla, L., Subudhi, E., Pradhan, D. (eds) The Role of Microalgae in Wastewater Treatment . Springer, Singapore. https://doi.org/10.1007/978-981-13-1586-2_3

Download citation

Publish with us

Policies and ethics