Skip to main content

Metabolic Engineering Prospects for Enhanced Green Fuel Production by Microalgae

  • Chapter
  • First Online:
  • 906 Accesses

Abstract

The world has been entering into a phase of acute energy crisis due to the logarithmic increase in global population and the continuous depletion of finite fossil fuel resources. Generation of greenhouse gasses due to combustion of fossil fuels adds further menace to the environment bringing about global warming. There is an urgent need to search for an alternative fuel source which is economic and environmental friendly. Microalgae are the photosynthetic microorganisms which have the potential to convert light energy into biofuel through series of biochemical reactions. However, the major drawbacks for algae-based biofuel production are the time-consuming processes. According to a report published by US Department of Energy, there are 3000 different microalgae having potential to produce TAG as main precursor of biofuel. There are several genes which encode enzymes for the lipid metabolism responsible for enhancing the lipid content in microalgae. Development of molecular tools and techniques and synthetic biology may give more insight into the synthesis of triacylglycerides (TAG) in lipid-accumulating microalgae. In this article, we review the possibility of development of metabolic engineering for lipid synthesis in microalgae and discuss the various strategies such as single gene expression, carbon assimilation, expression of transcription factors and flux balance analysis which increase the lipid accumulation via metabolic engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410. https://doi.org/10.1016/j.apenergy.2010.12.014

    Article  CAS  Google Scholar 

  2. Banerjee C, Dubey KK, Shukla P (2016) Metabolic engineering of microalgal based biofuel production: prospects and challenges. Front Microbiol 7:–432. https://doi.org/10.3389/fmicb.2016.00432

  3. Baroukh C, Steyer JP, Bernard O, Chachuat B (2016) Dynamic flux balance analysis of the metabolism of microalgae under a diurnal light cycle. IFAC-PapersOnLine 49:791–796. https://doi.org/10.1016/j.ifacol.2016.07.285

    Article  Google Scholar 

  4. Blatti JL, Beld J, Behnke CA et al (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions. PLoS One 7(9):e42949. https://doi.org/10.1371/journal.pone.0042949

    Article  CAS  Google Scholar 

  5. Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production processing and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  6. Chen CY, Zhao XQ, Yen HW et al (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10. https://doi.org/10.1016/j.bej.2013.03.006

    Article  CAS  Google Scholar 

  7. Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141(1–2):31–41. https://doi.org/10.1016/j.jbiotec.2009.02.018

    Article  CAS  Google Scholar 

  8. De Bhowmick G, Koduru L, Sen R (2015) Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—a review. Renew Sust Energ Rev 50:1239–1253. https://doi.org/10.1016/j.rser.2015.04.131

    Article  CAS  Google Scholar 

  9. Dehesh K, Jones A, Knutzon DS, Voelker TA (1996) Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana. Plant J 9:167–172. https://doi.org/10.1046/j.1365-313X.1996.09020167.x

    Article  CAS  Google Scholar 

  10. Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57/58:223–231. https://doi.org/10.1007/BF02941703

    Article  CAS  Google Scholar 

  11. Fan J, Cui Y, Wan M et al (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:17. https://doi.org/10.1186/1754-6834-7-17

    Article  CAS  Google Scholar 

  12. FAO (2007) Sustainable bioenergy: a framework for decision makers

    Google Scholar 

  13. FAO (Food and Agriculture Organization of the United Nation) (2008) The state of food and agriculture

    Google Scholar 

  14. Genkov T, Meyer M, Griffiths H, Spreitzer RJ (2010) Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in chlamydomonas. J Biol Chem 285:19833–19841. https://doi.org/10.1074/jbc.M110.124230

    Article  CAS  Google Scholar 

  15. Gimpel JA, Henríquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol 6:1376. https://doi.org/10.3389/fmicb.2015.01376

    Article  Google Scholar 

  16. Gong Y, Guo X, Wan X et al (2011) Characterization of a novel thioesterase (PtTE) from Phaeodactylum tricornutum. J Basic Microbiol 51:666–672. https://doi.org/10.1002/jobm.201000520

    Article  CAS  Google Scholar 

  17. Hsieh HJ, Su CH, Chien LJ (2012) Accumulation of lipid production in Chlorella minutissima by triacylglycerol biosynthesis-related genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica. J Microbiol 50:526–534. https://doi.org/10.1007/s12275-012-2041-5

    Article  CAS  Google Scholar 

  18. Hu J, Wang D, Li J et al (2015) Genome-wide identification of transcription factors and transcription-factor binding sites in oleaginous microalgae Nannochloropsis. Sci Rep 4:5454. https://doi.org/10.1038/srep05454

    Article  CAS  Google Scholar 

  19. Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x

    Article  CAS  Google Scholar 

  20. IEA (2010) Key world energy statistics. Paris

    Google Scholar 

  21. Karemore A, Pal R, Sen R (2013) Strategic enhancement of algal biomass and lipid in Chlorococcum infusionum as bioenergy feedstock. Algal Res 2:113–121. https://doi.org/10.1016/j.algal.2013.01.005

    Article  Google Scholar 

  22. Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701. https://doi.org/10.1016/j.phytochem.2006.01.010

    Article  CAS  Google Scholar 

  23. Klok A, Lamers P, Martens D et al (2014) Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol 32:521–528

    Article  CAS  Google Scholar 

  24. Kumar A, Ergas S, Yuan X et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380. https://doi.org/10.1016/j.tibtech.2010.04.004

    Article  CAS  Google Scholar 

  25. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690. https://doi.org/10.1016/j.biotechadv.2011.11.008

    Article  CAS  Google Scholar 

  26. Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451. https://doi.org/10.1039/c0ee00593b

    Article  CAS  Google Scholar 

  27. Ma Y, Wang X, Niu Y, et al (2014) Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. 1–9. https://doi.org/10.1186/s12934-014-0100-9

  28. Maeo K, Tokuda T, Ayame A et al (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487. https://doi.org/10.1111/j.1365-313X.2009.03967.x

    Article  CAS  Google Scholar 

  29. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542. https://doi.org/10.1016/j.biotechadv.2013.07.011

    Article  CAS  Google Scholar 

  30. May P, Christian J-O, Kempa S, Walther D (2009) ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics 10:209. https://doi.org/10.1186/1471-2164-10-209

    Article  CAS  Google Scholar 

  31. Medipally SR, Yusoff FM, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int 2015:519513 https://doi.org/10.1155/2015/519513

  32. Miller R, Wu G, Deshpande RR et al (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752. https://doi.org/10.1104/pp.110.165159

    Article  CAS  Google Scholar 

  33. Muthuraj M, Palabhanvi B, Misra S et al (2013) Flux balance analysis of Chlorella sp. FC2 IITG under photoautotrophic and heterotrophic growth conditions. Photosynth Res 118:167–179. https://doi.org/10.1007/s11120-013-9943-x

    Article  CAS  Google Scholar 

  34. Niu Y-F, Zhang M-H, Li D-W et al (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558–4569. https://doi.org/10.3390/md11114558

    Article  CAS  Google Scholar 

  35. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501. https://doi.org/10.1128/EC.00364-09

    Article  CAS  Google Scholar 

  36. Rodolfi L, Zittelli GC, Bassi N et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112. https://doi.org/10.1002/bit.22033

    Article  CAS  Google Scholar 

  37. Sapphire Energy I (2011) Stress-induced lipid trigger

    Google Scholar 

  38. Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226. https://doi.org/10.1263/jbb.101.223

    Article  CAS  Google Scholar 

  39. Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21. https://doi.org/10.1006/mben.2001.0204

    Article  CAS  Google Scholar 

  40. Trentacoste EM, Shrestha RP, Smith SR et al (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci 110:19748–19753. https://doi.org/10.1073/pnas.1309299110

    Article  CAS  Google Scholar 

  41. Verma N, Mehrotra S, Shukla A, Mishra B (2010) Prospective of biodiesel production utilizing microalgae as the cell factories: a comprehensive discussion. Afr J Biotechnol 9:1402–1411. https://doi.org/10.5897/AJBx09.071

    Article  CAS  Google Scholar 

  42. Whitney SM, Andrews TJ (2001) Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. Proc Natl Acad Sci U S A 98:14738–14743. https://doi.org/10.1073/pnas.261417298

    Article  CAS  Google Scholar 

  43. Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016

    Article  CAS  Google Scholar 

  44. Zhang J, Hao Q, Bai L et al (2014) Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechnol Biofuels 7:128. https://doi.org/10.1186/s13068-014-0128-4

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Prof (Dr.) S. C. Si, Dean, Centre of Biotechnology, and Prof (Dr.) M. R. Nayak, President, Siksha ‘O’ Anusandhan University, for providing financial support and encouragement throughout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enketeswara Subudhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, R.K., Subudhi, E. (2019). Metabolic Engineering Prospects for Enhanced Green Fuel Production by Microalgae. In: Sukla, L., Subudhi, E., Pradhan, D. (eds) The Role of Microalgae in Wastewater Treatment . Springer, Singapore. https://doi.org/10.1007/978-981-13-1586-2_16

Download citation

Publish with us

Policies and ethics