Skip to main content

Cyanobacteria in Reducing Pollution Load from Wastewater and Laboratory Bioassay of Heavy Metals on Ecotoxicity Study: A Review

  • Chapter
  • First Online:
The Role of Microalgae in Wastewater Treatment

Abstract

Cyanobacteria, also named as blue-green algae, are the only known prokaryotes capable of oxygenic photosynthesis. Treatments of both industrial and domestic wastewater through physico-chemical methods are invariably cost-intensive to be employed in industries especially in developing and underdeveloped countries. Therefore, in recent years, the importance of low-cost biological wastewater treatment by using the cyanobacteria compared to the conventional wastewater treatment plants has attracted the attention of the researchers. It has been reviewed that there is a reduction of about 70% calcium, 46% chloride, 100% nitrate, 88% nitrite, 100% ammonia, 92% total phosphorus, 12.5% magnesium, 85% BOD and 85% COD from different wastewater by application of different species of cyanobacteria. Further, the metals like Cu, Al, Cd, Zn, Hg, Cr, Ni, Pb, etc. play an important role in the growth and development of cyanobacteria under laboratory culture conditions. Toxicity on growth, effect on photosynthesis, damage of cell, algaecide effect, toxicity at sublethal concentration, ultrastructural changes, cell division and movement, changes in cellular components, etc. are some of the observations in cyanobacteria under laboratory bioassay for metal toxicity study. Besides these, cyanobacteria also show growth effect when grown in wastewater containing different types of pesticides, herbicides and other toxic chemicals. In the present review, an attempt has been made to review the role of different species of cyanobacteria in reducing the pollution load from different wastewater and also the laboratory bioassay of heavy metals on ecotoxicity of aquatic cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dash AK, Mishra PC (1998) Role of cyanobacteria in water pollution abatement. Indian J Environ Ecoplan 1:1 & 2): 1–1 & 2):11

    Google Scholar 

  2. Xiaochen M, Wenguang Z, Zongqiang F, Yanling C, Min M, Yuhuan L, Yunkai Z, Paul C, Roger R (2014) Effect of wastewater borne bacteria on algal growth and nutrients removal in wastewater – based algae cultivation system. Bioresour Technol 167:8–13

    Article  Google Scholar 

  3. Dash AK, Mishra PC (1996a) Changes in pigment and protein content of Westiellopsis prolifica, a blue-green alga, grown in paper mill wastewater. Microbios 85:257–266

    CAS  Google Scholar 

  4. Dash AK, Mishra PC (1996b) Changes in biomass, pigment and protein content of Westiellopsis prolifica, a blue-green alga, grown in nutrient manipulated paper mill wastewater. Cytobios 88:11–16

    CAS  Google Scholar 

  5. Dash AK, Mishra PC (1997) Blue –green alga in sewage – amended paper mills waste water. Int J Environ Stud 53:9–10

    Article  Google Scholar 

  6. Dash AK, Mishra PC (1999b) Growth response of the blue-green alga, Westiellopsis prolifica in sewage enriched paper mill waste water. Rev Int Cont Amb 15(2):79–83

    CAS  Google Scholar 

  7. Dash AK, Pradhan A (2013) Growth and biochemical changes of the blue-green alga, Anabaena doliolum in domestic waste water. Int J Sci Engg Res 4(6):2753–2758

    Google Scholar 

  8. Subramanian G, Shanmugasundaram S (1986) Sewage utilization and waste recycling by cyanobacteria. Ind J Environ Health 28:250–253

    CAS  Google Scholar 

  9. Palmer CM (1980) Algae and water pollution, vol 96. Castle House Publications Ltd, York, pp 31–38

    Google Scholar 

  10. Rana BC, Gopal T, Kumar HD (1971) Studies on the biological effect of industrial waste on the growth of algae. Ind J Environ Health 13:138–143

    Google Scholar 

  11. Elnabarawy MT, Welter AN (1984) Utilization of algae cultures and assays by industry. In: Shubert LE (ed) Algae as ecological indicators. Academic, pp 317–328

    Google Scholar 

  12. Dor I, Svi B (1980) Effect of heterotrophic bacteria on green algae growing in waste water. In: Sheief G, Soeder CJ (eds) Algae biomass. Elsevier/North Holland Biomedical Press, pp 421–429

    Google Scholar 

  13. Ganapathi SV, Amin PM (1972) Studies on algal bacterial symbiosis in low cost waste treatment systems. In: Desikachary TV (ed) Taxonomy and biology of BGA, pp 483–493

    Google Scholar 

  14. Gotaas HB, Oswald WH (1955) Transactions of the use of solar energy. Arizona, USA 4:95–11

    Google Scholar 

  15. Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civi Engrs 122:73–105

    Google Scholar 

  16. Mc Brien DCH, Hassal KA (1967) The effect of toxic doses of copper upon respiration photosynthesis and growth of Chlorella vulgaris. Physiol Plant 20:114

    Google Scholar 

  17. Steemann NL, Nielsen K, Wium AS (1969) The effect of deleterious concentration of copper in the photosynthesis of Chlorella pyrenoidosa. Physiol Plant 24:480

    Google Scholar 

  18. Gross RE, Punso P, Dugger WM (1970) Observation on the mechanism of copper damage in Chlorella. Plant Physiol 46:183

    Article  CAS  Google Scholar 

  19. Gibson CE (1972) The algicidal effect of copper on a green and blue green alga and some ecological implications. J Appl Ecol 9:513

    Article  Google Scholar 

  20. De Filippis LF, Pallaghy CK (1976) The effect of sublithal concentration of mercury and Znic on Chlorella III. Development and possible mechanism of resistance to metals. Z Pflanzenphysiol 79:323

    Article  Google Scholar 

  21. Massalski A, Laube VM, Kushner DJ (1981) Effect of cadmium and copper on the ultrastructure of Ankistrodesmum braunii and Anabaena, 7120. Microb Ecol 7:183

    Article  CAS  Google Scholar 

  22. Jensen TE, Baxter M, Rachlin JW, Jain V (1982) Uptake of heavy metals by Plectonema boryanum ( Chlorophyceae) into cellular components, especially polyphosphate bodies, an X-ray energy dispersive study. Environ Poll 27:119–127

    Article  CAS  Google Scholar 

  23. Manoharan C, Subramanian G (1993) Feasibility studies on using cynobacteria in Ossein effluent treatment. Ind J Environ Health 5(2):88–96

    Google Scholar 

  24. Manoharan C, Subramanian G (1992a) Interaction between paper mill effluent and the cynobacterium Oscillatoria pseudogeminata var, Urigranulata. Poll Res 11(2):73–84

    CAS  Google Scholar 

  25. Manoharan C, Subramanian G (1992b) Sewage cyno-bacterial interaction, a case study. Indian J Environ Prot 12(4):251–258

    CAS  Google Scholar 

  26. Uma L, Subramanian G (1990) Effective use of cynobacterium in effluent treatment, proc, Natl. Symp. Cynobacterium in Nitrogen fixation, IARI, New Delhi, Jan 29-31:437–443

    Google Scholar 

  27. Panigrahi KC (1984) Physiological and genetical effect of pesticides on blue green algae (effect of carbamate pesticides). Ph.D. dissertation, Berhampur University

    Google Scholar 

  28. Schauberger CW, Wildman RB (1977) Accumulation of aldrin and dieldrin by blue-green algae and related effects on the photosynthetic pigments. Bull Envion Contain Toxicol 17:534

    Article  CAS  Google Scholar 

  29. Snyder CE, Sheridan RP (1974) Toxicity of the pesticide zectran on photosynthesis, respiration and growth in four algae. V Phycol 10:137

    CAS  Google Scholar 

  30. Cullimore DR, Mc Cann AE (1977) Influence of four herbicides on the algal flora of a prairie soil. Plant Soil 40:455

    Google Scholar 

  31. Hawxby K, Tubea B, Ownby I, Baseler E (1977) Effect of various herbicides on four species of algae. Pest Biochem Physiol 7:203

    Article  CAS  Google Scholar 

  32. Marshall K (1994) Microbial adhesion in biotechnological process. Curr Opin Biotechnol 5:296

    Article  CAS  Google Scholar 

  33. Nakagawa T, Fukui M (2002) Phylogenetic characterization of microbial mats and streamers from a Japanese alkaline hot spring with a thermal gradient. J Gen Appl Microbiol 48:211

    Article  CAS  Google Scholar 

  34. Whitton BA (1992) Diversity, ecology and taxonomy of the cyanobacteria. In: Mann NH, Carr NG (eds) Photosynthetic prokaryotes. Plenum Press, New York, pp 1–51

    Google Scholar 

  35. Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 344:63

    Article  Google Scholar 

  36. Fuhrman JA, McCallum K, Davis AA (1993) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol 59:1294

    CAS  Google Scholar 

  37. Adhikary SP, Bastia AK, Tripathy PK (1992) Growth response of the nitrogen fixation cyanobacterioum Westiellopsis prolitica Janet, to fertilizer factory effluents. Bull Environ Contam Toxicol Springer – Verlag, New York, Inc 49:137–144

    CAS  Google Scholar 

  38. Dash AK, Mishra PC (1999a) Role of the blue – green alga, Westiellopsis prolifica in reducing pollution load from paper mill wastewater. Indian J Environ Protec 19(1):1–15

    CAS  Google Scholar 

  39. Sengar RMS, Sharma KD (1986) Role of algae in the assessment of pollution in river Yamuna. J Ind Bot Soc 66:352–334

    Google Scholar 

  40. Kumar KS, Dahms HU, Won FJ, Lee JS, Shin KH (2015) Microalgae—a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  Google Scholar 

  41. Mahapatra D, Chanakya HN, Ramachandra TV (2013) Treatment efficacy of algae-based sewage treatment plants. Environ Moniron Asses 185:7145–7164

    Article  CAS  Google Scholar 

  42. Priya M, Gurung N, Mukherjee K, Bose S (2014) Microalgae in removal of heavy metal and organic pollutants from soil. Microb Biodegrad Bioremedn 23:519–537

    Article  Google Scholar 

  43. Raj S, Patel PK, Vaishya RC (2017) Microalgae based treatment system efficient for wastewater: a review. 49th annual convention of IWWA on “Smart Water Management” January, 2017, pp 19–21

    Google Scholar 

  44. Rasoul-amini S, Montazeri-najafabady N, Shaker S, Safari A, Kazemi A, Mousavi P (2014) Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system. Biocat Agrl Biotech 3:126–131

    Google Scholar 

  45. Weiming H, Yin J, Deng B, Zhiqiang H (2015) Application of nano TiO2 modified hollow fiber membranes in algal membrane bioreactors for high-density algae cultivation and wastewater polishing. Bioresour Technol 193:135–141

    Article  Google Scholar 

  46. Yang J, Cao J, Xing G, Yuan H (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol 175:537–544

    Article  CAS  Google Scholar 

  47. Rath B, Adhikary SP (1996) Effect of pH, irradiance and population size on the toxicity of Furadon to two species at Anabaena. Biol Plant 38(4):563–570

    Article  Google Scholar 

  48. Misra BB, Nanda DR, Mishra BN (1985) Reclamation with blue green algae, mercury uptake by algae cultured in solid waste of a chlor – alkali factory and its effect on growth and pigmentation. J Environ Biol 6(4):223–231

    CAS  Google Scholar 

  49. Stevenson FJ (1967) Organic acids in soil. In: Mc Laren AD, Paterson GR (eds) Soil biochemistry. Marcel

    Google Scholar 

  50. Chan KY, Wong KH, Wond PK (1979) Nitrogen and phosphorus removal from sewage effluent with high salinity by Chlorella salina. Environ Poll 18:139–146

    Article  CAS  Google Scholar 

  51. Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and secenedesmus sp. Environ Poll 58:19–34

    Article  CAS  Google Scholar 

  52. Govindan VS (1984) Studies on algae in relation to treatment of diary wastewater. Ind J Environ Health 26:261–263

    CAS  Google Scholar 

  53. Saxena PN, Tewari A, Khan MA (1974) Effect of Anacystis nidulans on the physico-chemical and biological characteristics of raw sewage. Proc Ind Acad Sci 79:139–146

    CAS  Google Scholar 

  54. Sengar RMS, Sharma KD, Mittal S (1990) In vitro studies for the publication of river water by algal treatment. Geobios 17:77–81

    Google Scholar 

  55. Feachem RE, McGarry M, Mara D (1977) Water, waste and health in hot climates. Wiley, New York

    Google Scholar 

  56. Sallal AKJ, Babaa MM (1982) Enumeration and identification of pathogenic bacteria from sewage in Kuwait. Zentbl Microbial 137:603–610

    CAS  Google Scholar 

  57. Kankal NC, Neema P, Gokhe BH, Mehata CG (1987) Dissolved oxygen and detention time as process parameters in sewage treatment by aerated lagoon. I.A, C.P.W. Tech Annual 14:61–66

    Google Scholar 

  58. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    Article  CAS  Google Scholar 

  59. Chen Z, Ma W, Han M (2008) Biosorption of nickel and copper onto treated alga (Undaria pinnatifida), application of isotherm and kinetic models. J Hazard Matter 155:327–333

    Article  CAS  Google Scholar 

  60. Deng L, Su Y, Su H, Wang X, Zhu X (2006) Sorption and desorption of lead (g) from wastewater by green algae Cladophora fascicularis. J Hazard Matter, Dio 10:1016

    Google Scholar 

  61. Lim S, Chu W, Phang S (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. J Bioresour Technol 101:7314–7322

    Article  CAS  Google Scholar 

  62. Liu J, Sun Z, Gerken H (2014) Potential applications of microalgae in wastewater treatments. In: Recent advances in microalgal biotechnology. OMICS Publ, Gull Ave, pp 1–8

    Google Scholar 

  63. Lourie E, Gjengedal E (2011) Metal sorption by peat and algae treated peat: kinetics and factors affecting the process. Chemosphere 85:759–764

    Article  CAS  Google Scholar 

  64. Pandi M, Shashirekha V, Swamy M (2009) Biosorption of chromium from retan chrome liquor by cyanobacteria. Microbiol Res 164:420–428

    Article  CAS  Google Scholar 

  65. Rajhia SAL, Raut N, Qasmi FAL, Qasmi M, Saadi AA (2012) Treatment of industrial wastewater by using microalgae. Int Conference on Environ Biomedical and Biotech IPCBEE 41:217–221

    Google Scholar 

  66. Samhan AF (2008) Assessment of the ability of microalgae in removal of some industrial wastewater pollutants. M.Sc. thesis, Botany Department, Faculty of Science, Beni-Suef University, Egypt, pp 1–16

    Google Scholar 

  67. Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19(5):417–423

    Article  CAS  Google Scholar 

  68. Tastan BE, Duygu E, Donmez G (2012) Boron bioremoval by a newly isolated Chlorella sp. and its stimulation by growth stimulators. Water Res 46:167–175

    Article  Google Scholar 

  69. Tuzen M, Sari A (2010) Biosorption of selenium from aqeous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem Eng J 158:200–206

    Article  CAS  Google Scholar 

  70. Zhu G, Peng Y, Li B, Guo J, Yang Q, Wang S (2008) Biological removal of nitrogen from waste water. Rev Environ Contam Toxicol 192:159–195

    Article  CAS  Google Scholar 

  71. Mittal S, Sengar RMS, kavshik BD (1992) Uptake and toxicity of heavy metals to algae. Ind J Microb Environ 32(1):51–55

    Google Scholar 

  72. Afkar A, Ababna H, Fathi AA (2010) Toxicological response of the green alga Chlorella vulgaris to some heavy metals. Am J Environ Sci 6(3):230–237

    Article  CAS  Google Scholar 

  73. Chakraborty N, Banerjee A, Pal R (2011) Accumulation of lead by free and immobilized cyanobacteria with special reference to accumulation factor and recovery. Bioresour Technol 102:4191–4195

    Article  CAS  Google Scholar 

  74. Gupta VK, Rastogi A (2008) Biosorption of lead (II) from aqueous solution by non-living algal biomass Oedogonium sp. and Nostoc sp.- a comparative study. Colloids Surf B Bioint 64:170–178

    Article  CAS  Google Scholar 

  75. Gupta VK, Rastogi A, Nayak A (2010) Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J Colloids Surf Sci 342:533–539

    Article  CAS  Google Scholar 

  76. Kumar D, Rai J, Gaur JP (2012) Removal of metal ions by Phormidium bigranulatum (cyanobacteria)-dominated mat in batch and continuous flow systems. Bioresour Technol 104:202–207

    Article  CAS  Google Scholar 

  77. Liu Y, Cao Q, Luo F, Chen J (2009) Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J Hazard Matter 163:931–938

    Article  CAS  Google Scholar 

  78. Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z (2010) Biosorption of nickel (II) from aqueous solution by brown algae: equilibrium, dynamic and thermodynamic studies. J Hazard Matter 175:304–310

    Article  CAS  Google Scholar 

  79. Sari A, Tuzen M (2008) Biosorption of Pb (II) and Cd (II) from aqueous solution using green alga (Ulva lactuca) biomass. J Hazard Mater 152:302–208

    Article  CAS  Google Scholar 

  80. Singh L, Pavankumar AR, Lakshmanan R (2012) Effective removal of Cu2+ ions from aqueous medium using alginate as biosorbent. Ecol Eng 38:119–124

    Article  Google Scholar 

  81. Foy CD, Gerloff GC (1972) Response of Chlorella pyrenoidosa to aluminum and low pH. J Phycol 8:268

    CAS  Google Scholar 

  82. Klass E, Rowe DW, Massaro EJ (1974) The effect of cadmium on population growth of the green alga, Scenedesmus quadracanda. Bull Environ Cont Toxicol 12:442

    Article  CAS  Google Scholar 

  83. Rana BC, Kumar HD (1974) The toxicity of zinc to Chlorella vulgaris and Plectonema boryanum and its protection by phosphate. Phykos 13:60

    CAS  Google Scholar 

  84. Singh SP, Kashyap AK (1978) Manganese toxicity and mutagenesis in two blue green algae. Environ Expt Bot 18:47

    Article  CAS  Google Scholar 

  85. Ructer JG, Mc Carthy JJ, Carpenter EJ (1978) The toxic effect of copper on Oscillatoria theirbautii. Limnology and Ocenography 24:558

    Google Scholar 

  86. Nakano Y, Kamota JKO, Tod S, Fuwa F (1978) Toxic effect of cadmium on Euglena gracilis grown in zinc deficient and zinc sufficient media. Agric Biol Chemis 42:901

    CAS  Google Scholar 

  87. Stratton GW, Hubber AL, Corker CT (1979) Effect of mercury ion on Anabaena inaqualis. Appl Environ Microbiol 38:537

    CAS  Google Scholar 

  88. Bonaly J, Bariand A, Durel S, Mester JC (1980) Cadmium cytotoxicity and variation in nuclear content of DNA in Euglena gracilis. Physiol Plant 49:286

    Article  CAS  Google Scholar 

  89. Whitton BA, Daiz BM (1981.) Verh. Int Verein) Int verein Theo Angew Limnol 21:459

    Google Scholar 

  90. Singh SP, Pandey AK (1982) Cadmium mediated resistance to metals and antibiotics in a cynobacterium. Mol Gen Genet 187:247

    Article  Google Scholar 

  91. Rachlin JW, Jensen TEM, Jain V (1982) Utilization of morphometric analysis in evaluating response of Plectonema boryanum (Chlorophyceae) to expose to light heavy metals. Arch Environ Conta Toxicol 11:233

    Google Scholar 

  92. Kotangate LR, Sarkar R, Krishnamurthy KP (1984) Toxicity of mercury and zinc to Spirulina platensis. Indian J Environ Health 26(1):41

    Google Scholar 

  93. Rai LC, Raizada M (1985) Effect of nickel and silver ions on survival, growth, carbon fixation and nitrogenase activity of Noctoc muscorum regulation of toxicity by EDTA and calcium. J Gen Appl Microbiol 31:329

    Article  CAS  Google Scholar 

  94. Rai LC, Raizada M (1986) Nickel induced stimulation of growth heterocyst differentiation, CO2 uptake and nitrogenase activity in Nostoc muscorum. New Phytol 104:111

    Article  CAS  Google Scholar 

  95. Rai LC (1989) Silver toxicity in a nitrogen fixing cynobacterium, interaction with chromium, nickel and lead. Biol metals 2:122

    Article  CAS  Google Scholar 

  96. Rai LC, Jenson TE, Rechlin JW (1990) A morphometric and X ray energy dispersive approach to monitoring pH altered cadmium toxicity in Anabaena flosaquae. Arch Environ Contam Toxicol 119:479

    Article  Google Scholar 

  97. Dubey SK, Rai LC (1990) Heavy metal toxicity in a nitrogen cynobacterium Anabaena dolioum, regulation toxicity by certain environmental factor. Biomed Environ Sc 3(2):240

    CAS  Google Scholar 

  98. Rai LC, Mallick N, Singh JB, Kumar HD (1991) Physiological and biochemical characteristics of a copper tolerant and wild type train of Anabaena dolioum under copper stress. J Plant Physiol 138:68

    Article  CAS  Google Scholar 

  99. Prasad SM, Singh FB, Rai L, Pelczar MJ, Reid RD, Chan ECS (1977) Microbiology. Tata Mc Graw – Hill Publication Company, New Delhi

    Google Scholar 

  100. Husaini Y, Singh AK, Rai LC (1991) Cadmium toxicity to photosynthesis and associated electron transport system of Nostoc linckia. Bull Environ Cont Toxicity 46:146

    Article  CAS  Google Scholar 

  101. Batista AP, Ambrosano L, Graca S, Sousa C, Marques PA, Ribeiro B (2015) Combining urban wastewater treatment with biohydrogen production—an integrated microalgae-based approach. Bioresour Technol 184:230–235

    Article  CAS  Google Scholar 

  102. Singh B, Guldhe A, Singh P, Singh A, Rawat I, Bux F (2015) In: Kaushik G (ed). Applied environmental biotechnology: Present scenario and future trendsSustainable production of biofuels from microalgae using a biorefinary approach, pp 115–128

    Google Scholar 

  103. Vanthoor-Koopmans M, WIjffels RH, Barbosa MJ, Eppink MH (2013) Bio-refinery of microalgae for food and fuel. Bioresour Technol 135:142–149

    Article  CAS  Google Scholar 

  104. Han L, Pei H, Hu W, Han F, Song M, Zhang S (2014) Nutrient removal and lipid accumulation properties of newly isolated microalgal strains. Bioresour Technol 165:38–41

    Article  CAS  Google Scholar 

  105. Ramanna L, Guldhe A, Rawat I, Bux F (2014) The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour Technol 168:127–135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Kishore Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dash, A.K., Das, M., Pradhan, A. (2019). Cyanobacteria in Reducing Pollution Load from Wastewater and Laboratory Bioassay of Heavy Metals on Ecotoxicity Study: A Review. In: Sukla, L., Subudhi, E., Pradhan, D. (eds) The Role of Microalgae in Wastewater Treatment . Springer, Singapore. https://doi.org/10.1007/978-981-13-1586-2_1

Download citation

Publish with us

Policies and ethics