Harnessing Cognitive Features for Sentiment Analysis and Sarcasm Detection

  • Abhijit MishraEmail author
  • Pushpak Bhattacharyya
Part of the Cognitive Intelligence and Robotics book series (CIR)


This chapter begins the second part of the thesis in which we demonstrate how cognitive information can be harnessed for NLP, specifically for text classification. We discuss several possibilities of extracting features from the eye-movement patterns of annotators and injecting them in popular NLP frameworks. We show that features derived from such forms of cognitive data (referred to as cognition-driven features or cognitive features), when augmented with traditional linguistic features used for well-known supervised machine learning-based NLP systems, improve the performance of such systems. We stick to the tasks of sentiment analysis and sarcasm detection—two well-known problems in text classification.


  1. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. (2011). Sentiment analysis of twitter data. In Proceedings of the Workshop on Languages in Social Media (pp. 30–38). ACL.Google Scholar
  2. Akkaya, C., Wiebe, J., & Mihalcea, R. (2009). Subjectivity word sense disambiguation. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume 1 (pp. 190–199). ACL.Google Scholar
  3. Balamurali, A., Joshi, A., & Bhattacharyya, P. (2011). Harnessing wordnet senses for supervised sentiment classification. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 1081–1091).Google Scholar
  4. Barbieri, F., Saggion, H., & Ronzano, F. (2014). Modelling sarcasm in twitter, a novel approach. In ACL 2014 (p. 50).Google Scholar
  5. Barbosa, L., & Feng, J. (2010). Robust sentiment detection on twitter from biased and noisy data. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters (pp. 36–44). ACL.Google Scholar
  6. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang., 68(3), 255–278.CrossRefGoogle Scholar
  7. Barrett, M., & Søgaard, A. (2015). Using reading behavior to predict grammatical functions. In Proceedings of the Sixth Workshop on Cognitive Aspects of Computational Language Learning (pp. 1–5). Lisbon, Portugal: Association for Computational Linguistics.Google Scholar
  8. Benamara, F., Cesarano, C., Picariello, A., & Subrahmanian, V. S. (2007). Sentiment analysis: Adjectives and adverbs are better than adjectives alone. In ICWSM.Google Scholar
  9. Camblin, C. C., Gordon, P. C., & Swaab, T. Y. (2007). The interplay of discourse congruence and lexical association during sentence processing: Evidence from ERPs and eye tracking. J. Mem. Lang., 56(1), 103–128.CrossRefGoogle Scholar
  10. Campbell, J. D., & Katz, A. N. (2012). Are there necessary conditions for inducing a sense of sarcastic irony? Discourse Process., 49(6), 459–480.CrossRefGoogle Scholar
  11. Carvalho, P., Sarmento, L., Silva, M. J., & De Oliveira, E. (2009). Clues for detecting irony in user-generated contents: oh...!! it’s so easy;-). In Proceedings of the 1st International CIKM Workshop on Topic-sentiment Analysis for Mass Opinion (pp. 53–56). ACM.Google Scholar
  12. Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2, 27:1–27:27. (Software available at
  13. Clark, H. H., & Gerrig, R. J. (1984). On the pretense theory of irony.Google Scholar
  14. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Mach. Learn., 20(3), 273–297.zbMATHGoogle Scholar
  15. Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In Proceedings of the 12th international conference on World Wide Web (pp. 519–528). ACM.Google Scholar
  16. Davidov, D., Tsur, O., & Rappoport, A. (2010). Semi-supervised recognition of sarcastic sentences in twitter and amazon. In Proceedings of the Fourteenth Conference on Computational Natural Language Learning (pp. 107–116). Association for Computational Linguistics.Google Scholar
  17. dos Santos, C. N., & Gatti, M. (2014). Deep convolutional neural networks for sentiment analysis of short texts. In Proceedings of COLING.Google Scholar
  18. Dragut, E. C., & Fellbaum, C. (2014). The role of adverbs in sentiment analysis. In ACL 2014 (Vol. 1929, pp. 38–41).Google Scholar
  19. Esuli, A., & Sebastiani, F. (2006). Sentiwordnet: A publicly available lexical resource for opinion mining. In Proceedings of LREC (Vol. 6, pp. 417–422). Citeseer.Google Scholar
  20. Filik, R., Leuthold, H., Wallington, K., & Page, J. (2014). Testing theories of irony processing using eye-tracking and erps. J. Exp. Psychol. Learn. Mem. Cogn., 40(3), 811–828.CrossRefGoogle Scholar
  21. Flesch, R. (1948). A new readability yardstick. J. Appl. Psychol., 32(3), 221.CrossRefGoogle Scholar
  22. Ganapathibhotla, M., & Liu, B. (2008). Mining opinions in comparative sentences. In Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1 (pp. 241–248). Association for Computational Linguistics.Google Scholar
  23. Gibbs, R. W. (1986). Comprehension and memory for nonliteral utterances: The problem of sarcastic indirect requests. Acta Psychol., 62(1), 41–57.CrossRefGoogle Scholar
  24. Giora, R. (1995). On irony and negation. Discourse Process., 19(2), 239–264.CrossRefGoogle Scholar
  25. Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1:12.Google Scholar
  26. González-Ibánez, R., Muresan, S., & Wacholder, N. (2011). Identifying sarcasm in twitter: a closer look. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers-Volume 2 (pp. 581–586). Association for Computational Linguistics.Google Scholar
  27. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The weka data mining software: An update. ACM SIGKDD Explor. Newsl., 11(1), 10–18.CrossRefGoogle Scholar
  28. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. Oxford: Oxford University Press.Google Scholar
  29. Ikeda, D., Takamura, H., Ratinov, L.-A., & Okumura, M. (2008). Learning to shift the polarity of words for sentiment classification. In IJCNLP (pp. 296–303).Google Scholar
  30. Ivanko, S. L., & Pexman, P. M. (2003). Context incongruity and irony processing. Discourse Process., 35(3), 241–279.CrossRefGoogle Scholar
  31. Jia, L., Yu, C., & Meng, W. (2009). The effect of negation on sentiment analysis and retrieval effectiveness. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM ’09 (pp. 1827–1830). New York, NY, USA: ACM.Google Scholar
  32. Jorgensen, J., Miller, G. A., & Sperber, D. (1984). Test of the mention theory of irony. J. Exp. Psychol. Gen., 113(1), 112.CrossRefGoogle Scholar
  33. Joshi, A., Bhattacharyya, P., & Carman, M. J. (2016). Automatic sarcasm detection: A survey. CoRR. arXiv:1602.03426.
  34. Joshi, A., Mishra, A., Senthamilselvan, N., & Bhattacharyya, P. (2014). Measuring sentiment annotation complexity of text. In ACL (Daniel Marcu 22 June 2014 to 27 June 2014). ACL.Google Scholar
  35. Joshi, A., Sharma, V., & Bhattacharyya, P. (2015). Harnessing context incongruity for sarcasm detection. In Proceedings of 53rd Annual Meeting of the Association for Computational Linguistics, Beijing, China (p. 757).Google Scholar
  36. Joshi, S., Kanojia, D., & Bhattacharyya, P. (2013). More than meets the eye: Study of human cognition in sense annotation. naacl hlt 2013. Atlanta, USA.Google Scholar
  37. Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychol. Rev., 87(4), 329.CrossRefGoogle Scholar
  38. Kincaid, J. P., Fishburne, R. P., Jr., Rogers, R. L., & Chissom, B. S. (1975). Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel. DTIC Document: Technical report.Google Scholar
  39. Klerke, S., Goldberg, Y., & Søgaard, A. (2016). Improving sentence compression by learning to predict gaze. arXiv:1604.03357.
  40. Kouloumpis, E., Wilson, T., & Moore, J. (2011). Twitter sentiment analysis: The good the bad and the omg! ICWSM, 11, 538–541.Google Scholar
  41. Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203–205.CrossRefGoogle Scholar
  42. Li, F., Huang, M., & Zhu, X. (2010). Sentiment analysis with global topics and local dependency. In AAAI, (Vol. 10, pp. 1371–1376).Google Scholar
  43. Liebrecht, C., Kunneman, F., & van den Bosch, A. (2013). The perfect solution for detecting sarcasm in tweets# not. In WASSA 2013 (p. 29).Google Scholar
  44. Lin, C., & He, Y. (2009). Joint sentiment/topic model for sentiment analysis. In Proceedings of the 18th ACM conference on Information and knowledge management (pp. 375–384). ACM.Google Scholar
  45. Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In Mining text data (pp. 415–463). New York: Springer.Google Scholar
  46. Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the ACL: Human Language Technologies-Volume 1 (pp. 142–150). ACL.Google Scholar
  47. Martineau, J., & Finin, T. (2009). Delta tfidf: An improved feature space for sentiment analysis. In ICWSM (Vol. 9, p. 106).Google Scholar
  48. Maynard, D., & Greenwood, M. A. (2014). Who cares about sarcastic tweets? investigating the impact of sarcasm on sentiment analysis. In Proceedings of LREC.Google Scholar
  49. Mei, Q., Ling, X., Wondra, M., Su, H., & Zhai, C. (2007). Topic sentiment mixture: modeling facets and opinions in weblogs. In Proceedings of the 16th international conference on World Wide Web (pp. 171–180). ACM.Google Scholar
  50. Mishra, A., Joshi, A., & Bhattacharyya, P. (2014). A cognitive study of subjectivity extraction in sentiment annotation. In ACL 2014 (p. 142).Google Scholar
  51. Mishra, A., Kanojia, D., & Bhattacharyya, P. (2016). Predicting readers’ sarcasm understandability by modeling gaze behavior. In Proceedings of AAAI.Google Scholar
  52. Mullen, T., & Collier, N. (2004). Sentiment analysis using support vector machines with diverse information sources. In EMNLP (Vol. 4, pp. 412–418).Google Scholar
  53. Nakagawa, T., Inui, K., & Kurohashi, S. (2010). Dependency tree-based sentiment classification using crfs with hidden variables. In NAACL-HLT (pp. 786–794). Association for Computational Linguistics.Google Scholar
  54. Ng, V., Dasgupta, S., & Arifin, S. (2006). Examining the role of linguistic knowledge sources in the automatic identification and classification of reviews. In Proceedings of the COLING/ACL on Main conference poster sessions (pp. 611–618). Association for Computational Linguistics.Google Scholar
  55. Pang, B., & Lee, L. (2004). A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics (p. 271). Association for Computational Linguistics.Google Scholar
  56. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Found. Trends Inf. Retr., 2(1–2), 1–135.CrossRefGoogle Scholar
  57. Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: Sentiment classification using machine learning techniques. In ACL-02 conference on Empirical methods in natural language processing-Volume 10 (pp. 79–86). ACL.Google Scholar
  58. Popat, K., Andiyakkal Rajendran, B., Bhattacharyya, P., & Haffari, G. (2013). The haves and the have-nots: Leveraging unlabelled corpora for sentiment analysis. In ACL 2013 (Hinrich Schuetze 04 August 2013 to 09 August 2013) (pp. 412–422). ACL.Google Scholar
  59. Poria, S., Cambria, E., Winterstein, G., & Huang, G.-B. (2014). Sentic patterns: Dependency-based rules for concept-level sentiment analysis. Knowl.-Based Syst., 69, 45–63.CrossRefGoogle Scholar
  60. Ramteke, A., Malu, A., Bhattacharyya, P., & Nath, J. S. (2013). Detecting turnarounds in sentiment analysis: Thwarting. In ACL (Vol. 2, pp. 860–865).Google Scholar
  61. Rayner, K., & Sereno, S. C. (1994). Eye movements in reading: Psycholinguistic studies.Google Scholar
  62. Rayner, K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Mem. Cogn., 14(3), 191–201.CrossRefGoogle Scholar
  63. Riloff, E., Qadir, A., Surve, P., De Silva, L., Gilbert, N., & Huang, R. (2013). Sarcasm as contrast between a positive sentiment and negative situation. In Proceedings of Empirical Methods in Natural Language Processing (pp. 704–714).Google Scholar
  64. Saif, H., He, Y., & Alani, H. (2012). Alleviating data sparsity for twitter sentiment analysis. In CEUR Workshop Proceedings (CEUR-WS. org).Google Scholar
  65. Sharma, R., & Bhattacharyya, P. (2013). Detecting domain dedicated polar words. In Proceedings of the International Joint Conference on Natural Language Processing.Google Scholar
  66. Von der Malsburg, T., & Vasishth, S. (2011). What is the scanpath signature of syntactic reanalysis? J. Mem. Lang., 65(2), 109–127.CrossRefGoogle Scholar
  67. Von der Malsburg, T., Kliegl, R., & Vasishth, S. (2015). Determinants of scanpath regularity in reading. Cogn. Sci., 39(7), 1675–1703.CrossRefGoogle Scholar
  68. Wiebe, J., & Mihalcea, R. (2006). Word sense and subjectivity. In International Conference on Computational Linguistics and the 44th annual meeting of the ACL (pp. 1065–1072). ACL.Google Scholar
  69. Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of the conference on human language technology and empirical methods in natural language processing (pp. 347–354). Association for Computational Linguistics.Google Scholar
  70. Wood, E., & Bulling, A. (2014). Eyetab: Model-based gaze estimation on unmodified tablet computers. In Proceedings of the Symposium on Eye Tracking Research and Applications (pp. 207–210). ACM.Google Scholar
  71. Xu, X. and Frank, E. (2004). Logistic regression and boosting for labeled bags of instances. In Advances in knowledge discovery and data mining (pp. 272–281). Berlin: Springer.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.India Research LabIBM ResearchBangaloreIndia
  2. 2.Indian Institute of Technology PatnaPatnaIndia

Personalised recommendations