Skip to main content

Assessment of Pathological or Drug-Dependent Changes in Cell Membrane Morphology and Cell Biomechanical Properties by Atomic Force Microscopy

  • Chapter
  • First Online:
  • 1184 Accesses

Abstract

Identification of the nanoscale changes that take place in cell membrane (CM) morphology or cell biomechanical properties (CBPs) in disease states or in response to drug treatment enable for a better understanding of the effects of the drugs on disease pathogenesis and recovery. CM proteins and CBPs have a crucial role in the regulation of many physiological and pathological processes. Direct assessment of the CM and CBPs is therefore useful not only for a better appreciation of cell structure but also for a better understanding of cell pathophysiology. Atomic force microscopy (AFM) is a technique that can be employed to assess CM structure and CBPs at the nanometer scale. In the first part of this chapter, we describe the principles of AFM and appraise its value in the assessment of CM morphology and CBPs. In the second part, we review examples of disease- or drug-dependent changes in CM morphology and CBPs that have been elucidated using AFM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Robertson DS. The physical chemistry of brain and neural cell membranes: an overview. Neurochem Res. 2010;35:681–7.

    Article  CAS  Google Scholar 

  2. Glushkov VS, Storozhok LF, Panchenko LF, Silina EG. Role of membrane deformations in regulation of functions of cells. Biomed Khim. 2005;51:473–80.

    CAS  PubMed  Google Scholar 

  3. Chitemerere TA, Mukanganyama S. Evaluation of cell membrane integrity as a potential antimicrobial target for plant products. BMC Complement Altern Med. 2014;14:278.

    Article  Google Scholar 

  4. Klingstrom J, Hardestam J, Stoltz M, Zuber B, Lundkvist A, Linder S, et al. Loss of cell membrane integrity in puumala hantavirus-infected patients correlates with levels of epithelial cell apoptosis and perforin. J Virol. 2006;80:8279–82.

    Article  Google Scholar 

  5. Defour A, Sreetama SC, Jaiswal JK. Imaging cell membrane injury and subcellular processes involved in repair. J Vis Exp. 2014.

    Google Scholar 

  6. Grammas P, Moore P, Cashman RE, Floyd RA. Anoxic injury of endothelial cells causes divergent changes in protein kinase C and protein kinase a signaling pathways. Mol Chem Neuropathol. 1998;33:113–24.

    Article  CAS  Google Scholar 

  7. Shan Y, Wang H. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chem Soc Rev. 2015;44:3617–38.

    Article  CAS  Google Scholar 

  8. Dufrene YF, Pelling AE. Force nanoscopy of cell mechanics and cell adhesion. Nanoscale. 2013;5:4094–104.

    Article  CAS  Google Scholar 

  9. Xing X, Jin H, Lu Y, Wang Q, Pan Y, Cai J, et al. Detection of erythrocytes in patient with elliptocytosis complicating ITP using atomic force microscopy. Micron (Oxford, England: 1993). 2011;42:42–6.

    Article  CAS  Google Scholar 

  10. Jin H, Xing X, Zhao H, Chen Y, Huang X, Ma S, et al. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope. Biochem Biophys Res Commun. 2010;391:1698–702.

    Article  CAS  Google Scholar 

  11. Stolz M, Gottardi R, Raiteri R, Miot S, Martin I, Imer R, et al. Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. Nat Nanotechnol. 2009;4:186–92.

    Article  CAS  Google Scholar 

  12. Peng Z, Baena JC, Wang M. Investigations of micron and submicron wear features of diseased human cartilage surfaces. Proc Inst Mech Eng H J Eng Med. 2015;229:164–74.

    Article  Google Scholar 

  13. Muller DJ, Dufrene YF. Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol. 2011;21:461–9.

    Article  Google Scholar 

  14. Varady NH, Grodzinsky AJ. Osteoarthritis year in review 2015: mechanics. Osteoarthr Cartil. 2016;24:27–35.

    Article  CAS  Google Scholar 

  15. Desrochers J, Amrein MA, Matyas JR. Structural and functional changes of the articular surface in a post-traumatic model of early osteoarthritis measured by atomic force microscopy. J Biomech. 2010;43:3091–8.

    Article  Google Scholar 

  16. Southam G, Firtel M, Blackford BL, Jericho MH, Xu W, Mulhern PJ, et al. Transmission electron microscopy, scanning tunneling microscopy, and atomic force microscopy of the cell envelope layers of the archaeobacterium Methanospirillum hungatei GP1. J Bacteriol. 1993;175:1946–55.

    Article  CAS  Google Scholar 

  17. Engel A. Biological applications of scanning probe microscopes. Annu Rev Biophys Biophys Chem. 1991;20:79–108.

    Article  CAS  Google Scholar 

  18. Francis LW, Gonzalez D, Ryder T, Baer K, Rees M, White JO, et al. Optimized sample preparation for high-resolution AFM characterization of fixed human cells. J Microsc. 2010;240:111–21.

    Article  CAS  Google Scholar 

  19. Ruozi B, Belletti D, Tombesi A, Tosi G, Bondioli L, Forni F, et al. AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. Int J Nanomedicine. 2011;6:557–63.

    Article  CAS  Google Scholar 

  20. Radmacher M, Tillamnn RW, Fritz M, Gaub HE. From molecules to cells: imaging soft samples with the atomic force microscope. Science. 1992;257:1900–5.

    Article  CAS  Google Scholar 

  21. Le Grimellec C, Lesniewska E, Cachia C, Schreiber JP, de Fornel F, Goudonnet JP. Imaging of the membrane surface of MDCK cells by atomic force microscopy. Biophys J. 1994;67:36–41.

    Article  Google Scholar 

  22. Usukura E, Narita A, Yagi A, Ito S, Usukura J. An Unroofing method to observe the cytoskeleton directly at molecular resolution using atomic force microscopy. Sci Rep. 2016;6:27472.

    Article  CAS  Google Scholar 

  23. Hamon L, Curmi PA, Pastre D. High-resolution imaging of microtubules and cytoskeleton structures by atomic force microscopy. Methods Cell Biol. 2010;95:157–74.

    Article  CAS  Google Scholar 

  24. Berdyyeva T, Woodworth CD, Sokolov I. Visualization of cytoskeletal elements by the atomic force microscope. Ultramicroscopy. 2005;102:189–98.

    Article  CAS  Google Scholar 

  25. Jarvis SP. Resolving intra- and inter-molecular structure with non-contact atomic force microscopy. Int J Mol Sci. 2015;16:19936–59.

    Article  CAS  Google Scholar 

  26. Morkvenaite-Vilkonciene I, Ramanaviciene A, Ramanavicius A. Atomic force microscopy as a tool for the investigation of living cells. Medicina (Kaunas, Lithuania). 2013;49:155–64.

    Google Scholar 

  27. Kilpatrick JI, Revenko I, Rodriguez BJ. Nanomechanics of cells and biomaterials studied by atomic force microscopy. Adv Healthc Mater. 2015;4:2456–74.

    Article  CAS  Google Scholar 

  28. Kim KS, Cho CH, Park EK, Jung MH, Yoon KS, Park HK. AFM-detected apoptotic changes in morphology and biophysical property caused by paclitaxel in Ishikawa and HeLa cells. PLoS One. 2012;7:e30066.

    Article  CAS  Google Scholar 

  29. Liu Z, Jiao Y, Wang T, Zhang Y, Xue W. Interactions between solubilized polymer molecules and blood components. J Control Release. 2012;160:14–24.

    Article  CAS  Google Scholar 

  30. Liu Z, Janzen J, Brooks DE. Adsorption of amphiphilic hyperbranched polyglycerol derivatives onto human red blood cells. Biomaterials. 2010;31:3364–73.

    Article  CAS  Google Scholar 

  31. Picas L, Rico F, Deforet M, Scheuring S. Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability. ACS Nano. 2013;7:1054–63.

    Article  CAS  Google Scholar 

  32. Zuk A, Targosz-Korecka M, Szymonski M. Effect of selected drugs used in asthma treatment on morphology and elastic properties of red blood cells. Int J Nanomedicine. 2011;6:249–57.

    Article  CAS  Google Scholar 

  33. Zhong D, Jiao Y, Zhang Y, Zhang W, Li N, Zuo Q, et al. Effects of the gene carrier polyethyleneimines on structure and function of blood components. Biomaterials. 2013;34:294–305.

    Article  CAS  Google Scholar 

  34. Zhang Y, Zhang W, Wang S, Wang C, Xie J, Chen X, et al. Detection of erythrocytes in patient with iron deficiency anemia using atomic force microscopy. Scanning. 2012;34:215–20.

    Article  Google Scholar 

  35. Iyer S, Gaikwad RM, Subba-Rao V, Woodworth CD, Sokolov I. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat Nanotechnol. 2009;4:389–93.

    Article  CAS  Google Scholar 

  36. Iyer S, Woodworth CD, Gaikwad RM, Kievsky YY, Sokolov I. Towards nonspecific detection of malignant cervical cells with fluorescent silica beads. Small (Weinheim an der Bergstrasse, Germany). 2009;5:2277–84.

    Article  CAS  Google Scholar 

  37. Bai H, Jin H, Yang F, Zhu H, Cai J. Apigenin induced MCF-7 cell apoptosis-associated reactive oxygen species. Scanning. 2014;36:622–31.

    Article  CAS  Google Scholar 

  38. Ushiki T. Atomic force microscopy and its related techniques in biomedicine. Ital J Anat Embryol = Archivio italiano di anatomia ed embriologia. 2001;106:3–8.

    Google Scholar 

  39. Choi S, Jung GB, Kim KS, Lee GJ, Park HK. Medical applications of atomic force microscopy and Raman spectroscopy. J Nanosci Nanotechnol. 2014;14:71–97.

    Article  CAS  Google Scholar 

  40. Lal R, Arnsdorf MF. Multidimensional atomic force microscopy for drug discovery: a versatile tool for defining targets, designing therapeutics and monitoring their efficacy. Life Sci. 2010;86:545–62.

    Article  CAS  Google Scholar 

  41. Pillet F, Chopinet L, Formosa C, Dague E. Atomic force microscopy and pharmacology: from microbiology to cancerology. Biochim Biophys Acta. 1840;2014:1028–50.

    Google Scholar 

  42. Alsteens D, Verbelen C, Dague E, Raze D, Baulard AR, Dufrene YF. Organization of the mycobacterial cell wall: a nanoscale view. Pflugers Arch. 2008;456:117–25.

    Article  CAS  Google Scholar 

  43. Francius G, Domenech O, Mingeot-Leclercq MP, Dufrene YF. Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J Bacteriol. 2008;190:7904–9.

    Article  CAS  Google Scholar 

  44. Haase K, Pelling AE. Investigating cell mechanics with atomic force microscopy. J R Soc Interface. 2015;12:20140970.

    Article  Google Scholar 

  45. Cross SE, Jin YS, Tondre J, Wong R, Rao J, Gimzewski JK. AFM-based analysis of human metastatic cancer cells. Nanotechnology. 2008;19:384003.

    Article  Google Scholar 

  46. Zhao X, Zhong Y, Ye T, Wang D, Mao B. Discrimination between cervical Cancer cells and normal cervical cells based on longitudinal elasticity using atomic force microscopy. Nanoscale Res Lett. 2015;10:482.

    Article  Google Scholar 

  47. Li QS, Lee GY, Ong CN, Lim CT. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun. 2008;374:609–13.

    Article  CAS  Google Scholar 

  48. Dufrene YF. Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol. 2008;6:674–80.

    Article  CAS  Google Scholar 

  49. Sugimoto Y, Pou P, Abe M, Jelinek P, Perez R, Morita S, et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature. 2007;446:64–7.

    Article  CAS  Google Scholar 

  50. Whited AM, Park PS. Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. Biochim Biophys Acta. 1838;2014:56–68.

    Google Scholar 

  51. Longo G, Kasas S. Effects of antibacterial agents and drugs monitored by atomic force microscopy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6:230–44.

    Article  CAS  Google Scholar 

  52. Jung SH, Park JY, Yoo JO, Shin I, Kim YM, Ha KS. Identification and ultrastructural imaging of photodynamic therapy-induced microfilaments by atomic force microscopy. Ultramicroscopy. 2009;109:1428–34.

    Article  CAS  Google Scholar 

  53. Jin H, Liang Q, Chen T, Wang X. Resveratrol protects chondrocytes from apoptosis via altering the ultrastructural and biomechanical properties: an AFM study. PLoS One. 2014;9:e91611.

    Article  Google Scholar 

  54. Wang J, Wan Z, Liu W, Li L, Ren L, Wang X, et al. Atomic force microscope study of tumor cell membranes following treatment with anti-cancer drugs. Biosens Bioelectron. 2009;25:721–7.

    Article  CAS  Google Scholar 

  55. Cai X, Gao S, Cai J, Wu Y, Deng H. Artesunate induced morphological and mechanical changes of Jurkat cell studied by AFM. Scanning. 2009;31:83–9.

    Article  CAS  Google Scholar 

  56. Muller DJ, Dufrene YF. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol. 2008;3:261–9.

    Article  Google Scholar 

  57. Zemla J, Danilkiewicz J, Orzechowska B, Pabijan J, Seweryn S. Lekka M. Semin Cell Dev Biol: Atomic force microscopy as a tool for assessing the cellular elasticity and adhesiveness to identify cancer cells and tissues; 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiye Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jin, H., Zhao, Y., Wang, W., Jiang, J., Cai, J., Evans, C.E. (2018). Assessment of Pathological or Drug-Dependent Changes in Cell Membrane Morphology and Cell Biomechanical Properties by Atomic Force Microscopy. In: Cai, J. (eds) Atomic Force Microscopy in Molecular and Cell Biology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1510-7_8

Download citation

Publish with us

Policies and ethics