Skip to main content

Atomic Force Microscopy: A Nanoscopic Application in Molecular and Cell Biology

  • Chapter
  • First Online:
Atomic Force Microscopy in Molecular and Cell Biology

Abstract

At the prosperous fields of nanoscience and biology, the nanoscale analysis of cells and cell membrane using atomic force microscopy (AFM) is an exciting and rapidly developing research area. Over the past decade, there has been tremendous progress in the use of AFM to observe living cells and membrane proteins at high resolution. Remarkable advances have been made in applying AFM-based force spectroscopy techniques to characterize surface biomechanical properties, to map receptor sites on cell surface, and to measure cellular interactions at the single-cell or single-molecule level. Moreover, recent developments in AFM combining advanced optical microscopy, such as confocal microscopy and near-field scanning optical microscopy, opened up new avenues for cell imaging at nanoscale resolution.

These authors of Huai-Hong Cai and Jiye Cai contributed equally to this chapter and share the corresponding authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi Y, Cai M, Zhou L, Wang H. The structure and function of cell membranes studied by atomic force microscopy. Semin Cell Dev Biol. 2017;73:31–44.

    Article  PubMed  CAS  Google Scholar 

  2. Dufr YF. Ecirc, towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol. 2008;6(9):674.

    Article  CAS  Google Scholar 

  3. Alsteens D, Gaub HE, Newton R, Pfreundschuh M, Gerber C, Müller DJ. Atomic force microscopy-based characterization and design of biointerfaces. Nat Rev Mater. 2017;2:17008.

    Article  CAS  Google Scholar 

  4. Scheuring S, Sturgis JN. Chromatic adaptation of photosynthetic membranes. Science. 2005;309:484–7.

    Article  CAS  PubMed  Google Scholar 

  5. Viani MB, Pietrasanta LI, Thompson JB, Chand A, Gebeshuber IC, Kindt JH, Richter M, Hansma HG, Hansma PK. Probing protein|[ndash]|protein interactions in real time. Nat Struct Biol. 2000;7:644–7.

    Article  CAS  PubMed  Google Scholar 

  6. Hinterdorfer P, Dufrêne YF. Detection and localization of single molecular recognition events using atomic force microscopy. Nat Meth. 2006;3:347–55.

    Article  CAS  Google Scholar 

  7. Müller DJ, Helenius J, Alsteens D, Dufrêne YF. Force probing surfaces of living cells to molecular resolution. Nat Chem Biol. 2009;5:383–90.

    Article  PubMed  CAS  Google Scholar 

  8. Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinezmartin D, Engel A, Gerber C, Müller DJ. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nanotechnol. 2017;12:295–307.

    Article  PubMed  CAS  Google Scholar 

  9. Engel A, Müller DJ. Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol. 2000;7:715–8.

    Article  CAS  PubMed  Google Scholar 

  10. Viani MB, Schaffer TE, Chand A, Rief M. Small cantilevers for force spectroscopy of single molecules. J Appl Phys. 1999;86:2258–62.

    Article  CAS  Google Scholar 

  11. Afrin R, Arakawa H, Osada T, Ikai A. Extraction of membrane proteins from a living cell surface using the atomic force microscope and covalent crosslinkers. Cell Biochem Biophys. 2003;39:101–17.

    Article  CAS  PubMed  Google Scholar 

  12. Müller DJ, Dufrêne YF. Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol. 2011;21:461–9.

    Article  PubMed  CAS  Google Scholar 

  13. Yuste R. Fluorescence microscopy today. Nat Methods. 2005;2:902–4.

    Article  CAS  PubMed  Google Scholar 

  14. Hell S. Microscopy and its focal switch. Nat Methods. 2009;6:24–32.

    Article  CAS  PubMed  Google Scholar 

  15. Radmacher M, Tillamnn RW, Fritz M, Gaub HE. From molecules to cells: imaging soft samples with the atomic force microscope. Science. 1992;257:1900–5.

    Article  CAS  PubMed  Google Scholar 

  16. Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science. 1989;243:1586–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kuznetsov YG, Mcpherson A. Atomic force microscopy in imaging of viruses and virus-infected cells. Microbiol Mol Biol Rev. 2011;75:268–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ido S, Kimura K, Oyabu N, Kobayashi K, Tsukada M, Matsushige K, Yamada H. Beyond the helix pitch: direct visualization of native DNA in aqueous solution. ACS Nano. 2013;7:1817–22.

    Article  CAS  PubMed  Google Scholar 

  19. Pyne A, Thompson R, Leung C, Roy D, Hoogenboom BW. Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small. 2014;10:3257–61.

    Article  CAS  PubMed  Google Scholar 

  20. Ido S, Kimiya H, Kobayashi K, Kominami H, Matsushige K, Yamada H. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy. Nat Mater. 2014;13:264–70.

    Article  CAS  PubMed  Google Scholar 

  21. Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Müller DJ. Proton powered turbine of a plant motor. Nature. 2000;405:418–9.

    Article  CAS  PubMed  Google Scholar 

  22. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K. Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature. 2003;421:127–8.

    Article  CAS  PubMed  Google Scholar 

  23. Müller DJ, Dufrêne YF. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol. 2008;3:261–9.

    Article  PubMed  CAS  Google Scholar 

  24. Elie-Caille C, Severin F, Helenius J, Howard J, Muller DJ, Hyman AA. Straight GDP-tubulin Protofilaments form in the presence of Taxol. Curr Biol CB. 2007;17:1765–70.

    Article  CAS  PubMed  Google Scholar 

  25. Müller DJ, Hand GM, Engel A, Sosinsky GE. Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO J. 2002;21:3598–607.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu J, Bippes CA, Hand GM, Muller DJ, Sosinsky GE. Aminosulfonate modulated pH-induced conformational changes in connexin26 hemichannels. J Biol Chem. 2007;282:8895–904.

    Article  CAS  PubMed  Google Scholar 

  27. Grandbois M, Dettmann W, Benoit M, Gaub HE. Affinity imaging of red blood cells using an atomic force microscope. J Histochem Cytochem. 2000;48:719–24.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao W, Tian Y, Cai M, Wang F, Wu J, Gao J, Liu S, Jiang J, Jiang S, Wang H. Studying the nucleated mammalian cell membrane by single molecule approaches. PLoS One. 2014;9:e91595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Devaux PF, Morris R. Transmembrane asymmetry and lateral domains in biological membranes. Traffic. 2004;5:241–6.

    Article  CAS  PubMed  Google Scholar 

  30. Chtcheglova LA, Waschke J, Wildling L, Drenckhahn D, Hinterdorfer P. Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys J. 2007;93:11–3.

    Article  CAS  Google Scholar 

  31. Lee S, Mandic J, Vliet KJV. Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc Natl Acad Sci U S A. 2007;104:9609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Y.F. Dufr, Ecirc, Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol 6 (2008) 674.

    Article  PubMed  CAS  Google Scholar 

  33. Plomp M, Leighton TJ, Wheeler KE, Hill HD, Malkin AJ. In vitro high-resolution structural dynamics of single germinating bacterial spores. Proc Natl Acad Sci U S A. 2007;104:9644–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dupres V, Alsteens D, Pauwels K, Dufrêne YF. In vivo imaging of S-layer Nanoarrays on Corynebacterium glutamicum. Langmuir ACS J Surf Colloids. 2009;25:9653–5.

    Article  CAS  Google Scholar 

  35. Touhami AM, Jericho H, Beveridge TJ. Atomic force microscopy of cell growth and division in Staphylococcus aureus. J Bacteriol. 2004;186:3286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Turner RD, Thomson NH, Kirkham J, Devine D. Improvement of the pore trapping method to immobilize vital coccoid bacteria for high-resolution AFM: a study of Staphylococcus aureus. J Microsc. 2010;238:102–10.

    Article  CAS  PubMed  Google Scholar 

  37. Andre G, Kulakauskas S, Chapotchartier MP, Navet B, Deghorain M, Bernard E, Hols P, Dufrêne YF. Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells. Nat Commun. 2010;1:27.

    Article  PubMed  CAS  Google Scholar 

  38. Andre G, Deghorain M, Bron PA, Swam IIV, Kleerebezem M, Hols P, Dufrêne YF. Fluorescence and atomic force microscopy imaging of wall teichoic acids in lactobacillus plantarum. ACS Chem Biol. 2011;6:366–76.

    Article  CAS  PubMed  Google Scholar 

  39. Heu C, Berquand A, Elie-Caille C, Nicod L. Glyphosate-induced stiffening of HaCaT keratinocytes, a peak force tapping study on living cells. J Struct Biol. 2012;178:1–7.

    Article  CAS  PubMed  Google Scholar 

  40. Wang H, Hao X, Shan Y, Jiang J, Cai M, Shang X. Preparation of cell membranes for high resolution imaging by AFM. Ultramicroscopy. 2010;110:305–12.

    Article  CAS  PubMed  Google Scholar 

  41. Müller DJ, Dufrêne YF. Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol. 2011;21:461–9.

    Article  PubMed  CAS  Google Scholar 

  42. Pfreundschuh M, Hensen U, Müller DJ. Quantitative imaging of the electrostatic field and potential generated by a transmembrane protein pore at subnanometer resolution. Nano Lett. 2013;13:5585–93.

    Article  CAS  PubMed  Google Scholar 

  43. Braga PC, Ricci D. Detection of rokitamycin-iduced morphostructural alterations in helicobacter pylori by atomic force microscopy. Chemotherapy. 2000;46:15–22.

    Article  CAS  PubMed  Google Scholar 

  44. Alsteens D, Verbelen C, Dague E, Raze D, Baulard AR, Dufrêne YF. Organization of the mycobacterial cell wall: a nanoscale view. Pflugers Arch - Eur J Physiol. 2008;456:117–25.

    Article  CAS  Google Scholar 

  45. Dague E, Alsteens D, Latgé JP, Dufrêne YF. High-resolution cell surface dynamics of germinating aspergillus fumigatus conidia. Biophys J. 2008;94:656–60.

    Article  CAS  PubMed  Google Scholar 

  46. Ke C, Chen J, Guo Y, Chen ZW, Cai J. Migration mechanism of mesenchymal stem cells studied by QD/NSOM. Biochim Biophys Acta. 2015;1848:859–68.

    Article  CAS  Google Scholar 

  47. Knockenhauer KE, Schwartz TU. The nuclear pore complex as a flexible and dynamic gate. Cell. 2016;164:1162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ushiki T, Hoshi O. Atomic force microscopy for imaging human metaphase chromosomes. Chromosom Res Int J Mol Supramolecular Evol Aspects Chromosom Biol. 2008;16:383–96.

    Article  CAS  Google Scholar 

  49. Scheuring S, Sturgis JN. Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery. Photosynth Res. 2009;102:197–211.

    Article  CAS  PubMed  Google Scholar 

  50. Norregaard K, Metzler R, Ritter CM, Berg-Sørensen K, Oddershede LB. Manipulation and motion of organelles and single molecules in living cells. Chem Rev. 2017;117:4342–75.

    Article  CAS  PubMed  Google Scholar 

  51. Wu Y, Cai J, Cheng L, Xu Y, Lin Z, Wang C, Chen Y. Atomic force microscope tracking observation of Chinese hamster ovary cell mitosis. Micron. 2006;37:139–45.

    Article  PubMed  Google Scholar 

  52. Liu LN, Scheuring S. Investigation of photosynthetic membrane structure using atomic force microscopy. Trends Plant Sci. 2013;18:277–86.

    Article  CAS  PubMed  Google Scholar 

  53. Scheuring S, Dufrêne YF. Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution. Mol Microbiol. 2010;75:1327–36.

    Article  CAS  PubMed  Google Scholar 

  54. Scheuring S, Sturgis JN. Chromatic adaptation of photosynthetic membranes. Science. 2005;309:484–7.

    Article  CAS  PubMed  Google Scholar 

  55. Rotsch C, Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J. 2000;78:520–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cuerrier CM, Benoit M, Guillemette G, Gobeil F, Grandbois M. Real-time monitoring of angiotensin II-induced contractile response and cytoskeleton remodeling in individual cells by atomic force microscopy. Pflugers Arch - Eur J Physiol. 2009;457:1361–72.

    Article  CAS  Google Scholar 

  57. Chen Y, Cai J, Xu Q, Chen ZW. Atomic force bio-analytics of polymerization and aggregation of phycoerythrin-conjugated immunoglobulin G molecules. Mol Immunol. 2004;41:1247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jin H, Pi J, Huang X, Huang F, Shao W, Li S, Chen Y, Cai J. BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: an AFM investigation. Appl Microbiol Biotechnol. 2012;93:1715–23.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang S, Aslan H, Besenbacher F, Dong M. Quantitative biomolecular imaging by dynamic nanomechanical mapping. Chem Soc Rev. 2014;43:7412–29.

    Article  CAS  PubMed  Google Scholar 

  60. Dufrêne YF, Martínezmartín D, Medalsy I, Alsteens D, Müller DJ. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat Methods. 2013;10:847–54.

    Article  PubMed  CAS  Google Scholar 

  61. Matzke R, Jacobson K, Radmacher M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol. 2001;3:607–10.

    Article  CAS  PubMed  Google Scholar 

  62. Hecht FM, Rheinlaender J, Schierbaum N, Goldmann WH, Fabry B, Schäffer TE. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale. Soft Matter. 2015;11:4584–91.

    Article  CAS  PubMed  Google Scholar 

  63. Beaussart A, El-Kirat-Chatel S, Fontaine T, Latgé JP, Dufrêne YF. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus. Nanoscale. 2015;7:14996.

    Article  CAS  PubMed  Google Scholar 

  64. Marchetti M, Wuite G, Roos WH. Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation. Curr Opin Virol. 2016;18:82–8.

    Article  CAS  PubMed  Google Scholar 

  65. Medalsy ID, Müller DJ. Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. ACS Nano. 2013;7:2642–50.

    Article  CAS  PubMed  Google Scholar 

  66. Medalsy I, Hensen U, Muller DJ. Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force-volume AFM. Angew Chem. 2011;50:12103–8.

    Article  CAS  Google Scholar 

  67. Wegmann S, Medalsy I, Mandelkow E, Müller D. The fuzzy coat of pathological human tau fibrils is a two-layered polyelectrolyte brush. Proc Natl Acad Sci U S A. 2013;110:313–21.

    Article  Google Scholar 

  68. Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, Hyotyla JT, Aebi U, Bentires-Alj M, Lim RY. The Nanomechanical signature of breast cancer. Nat Nanotechnol. 2012;7:757–65.

    Article  CAS  PubMed  Google Scholar 

  69. Touhami A, Nysten B, Dufrêne YF. Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir. 2003;19:4539–43.

    Article  CAS  Google Scholar 

  70. Gerber C, Lang HP. How the doors to the nanoworld were opened. Nat Nanotechnol. 2006;1:3–5.

    Article  CAS  PubMed  Google Scholar 

  71. Viani MB, Schäffer TE, Chand A, Rief M, Gaub HE, Hansma PK. Small cantilevers for force spectroscopy of single molecules. J Appl Phys. 1999;86:2258–62.

    Article  CAS  Google Scholar 

  72. Ando T, Kodera N, Naito Y, Kinoshita T, Furuta KY, Toyoshima YY. A high-speed atomic force microscope for studying biological macromolecules in action. Proc Natl Acad Sci U S A. 2001;98:12468–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Alcaraz J, Buscemi L, Puigdemorales M, Colchero J, Baró AA, Navajas D. Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir. 2002;18:716–21.

    Article  CAS  Google Scholar 

  74. Sahin O, Magonov S, Su C, Quate CF, Solgaard O. An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat Nanotechnol. 2007;2:507–14.

    Article  PubMed  Google Scholar 

  75. Frisbie CD, Lieber CM. Functional group imaging by chemical force microscopy. Science (New York, NY). 1994;265:2071–4.

    Article  CAS  Google Scholar 

  76. Ludwig M, Dettmann W, Gaub HE. Atomic force microscope imaging contrast based on molecular recognition. Biophys J. 1997;72:445–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996;93:3477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sotomayor M, Schulten K. Single-molecule experiments in vitro and in silico. Science. 2007;316:1144–8.

    Article  CAS  PubMed  Google Scholar 

  79. Moy VT, Florin EL, Gaub HE. Intermolecular forces and energies between ligands and receptors. Science. 1994;266:257–9.

    Article  CAS  PubMed  Google Scholar 

  80. Lee GU, Kidwell DA, Colton RJ. Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir. 1994;10:354–7.

    Article  CAS  Google Scholar 

  81. Lee GU, Chrisey LA, Colton RJ. Direct measurement of the forces between complementary strands of DNA. Science. 1994;266:771–3.

    Article  CAS  PubMed  Google Scholar 

  82. Franz CM, Taubenberger A, Puech PH, Muller DJ. Studying integrin-mediated cell adhesion at the single-molecule level using AFM force spectroscopy. Sci STKE. 2007;2007

    Google Scholar 

  83. Chtcheglova LA, Waschke J, Wildling L, Drenckhahn D, Hinterdorfer P. Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys J. 2007;93:11–3.

    Article  CAS  Google Scholar 

  84. Alsteens D, Garcia MC, Lipke PN, Dufrêne YF. Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc Natl Acad Sci U S A. 2010;107:20744–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang B, Babcock H, Zhuang X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell. 2010;143:1047–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hein B, Willig KI, Wurm CA, Westphal V, Jakobs S, Hell SW. Stimulated emission depletion Nanoscopy of living cells using SNAP-tag fusion proteins. Biophys J. 2010;98:158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3:793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nguyen TQ, Schwartz BJ, Schaller RD, Johnson JC, Lee LF, Haber LH, Saykally RJ. Near-Field Scanning Optical Microscopy (NSOM) studies of the relationship between interchain interactions, morphology, photodamage, and energy transport in conjugated polymer films. J Phys Chem B. 2016;105:5153–60.

    Article  CAS  Google Scholar 

  89. Sengupta P, Engelenburg SBV, Lippincottschwartz J. Superresolution imaging of biological systems using photoactivated localization microscopy. Chem Rev. 2014;114:3189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sydor AM, Czymmek KJ, Puchner EM, Mennella V. Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol. 2015;25:730–48.

    Article  CAS  PubMed  Google Scholar 

  91. Frankel DJ, Pfeiffer JR, Surviladze Z, Johnson AE, Oliver JM, Wilson BS, Burns AR. Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging. Biophys J. 2006;90:2404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi T. Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy. 2000;82:253–8.

    Article  CAS  PubMed  Google Scholar 

  93. Charras GT, Horton MA. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J. 2002;82:2970–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Alsteens D, Newton R, Schubert R, Martinez-Martin D, Delguste M, Roska B, Müller DJ. Nanomechanical mapping of first binding steps of a virus to animal cells. Nat Nanotechnol. 2016;12:177–83.

    Article  PubMed  CAS  Google Scholar 

  95. Delcea M, Schmidt S, Palankar R, Fernandes PAL, Fery A, Möhwald H, Skirtach AG. Mechanobiology: correlation between mechanical stability of microcapsules studied by AFM and impact of cell-induced stresses. Small. 2010;6:2858–62.

    Article  CAS  PubMed  Google Scholar 

  96. Paskaramoorthy R, Bugarin S, Reid RG. Mechanical strength and intracellular uptake of CaCO3-templated LbL capsules composed of biodegradable polyelectrolytes: the influence of the number of layers. J Mater Chem B. 2013;1:1175–81.

    Article  CAS  Google Scholar 

  97. Abulrob A, Lu Z, Brunette E, Pulla D, Stanimirovic D, Johnston LJ. Near-field scanning optical microscopy detects nanoscale glycolipid domains in the plasma membrane. J Microsc. 2008;232:225–34.

    Article  CAS  PubMed  Google Scholar 

  98. Zhong L, Liao W, Wang X, Cai J. Detection the specific marker of CD3 molecules of human peripheral blood T lymphocytes using SNOM and quantum dots. Colloids Surf A Physicochem Eng Asp. 2008;313–314:642–6.

    Article  CAS  Google Scholar 

  99. Chen Y, Shao L, Ali Z, Cai J, Chen ZW. NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal Vγ2Vδ2. Blood. 2008;111:4220–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zeng G, Chen CY, Huang D, Yao S, Wang RC, Chen ZW. Membrane-bound IL-22 after de novo production in tuberculosis and anti-M.tuberculosis effector function of IL-22+CD4+ T cells. J Immunol. 2011;187:190.

    Article  CAS  PubMed  Google Scholar 

  101. Pi J, Jin H, Yang F, Chen ZW, Cai J. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine. Nanoscale. 2014;6:12229–49.

    Article  CAS  PubMed  Google Scholar 

  102. Chen J, Pei Y, Chen Z, Cai J. Quantum dot labeling based on near-field optical imaging of CD44 molecules. Micron. 2010;41:198–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Macao Science and Technology Development Fund (Grant No. 028/2014/A1).

Conflict of Interest Disclosures

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huai-Hong Cai or Jiye Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cai, HH., Zeng, X., Tang, X., Cai, J. (2018). Atomic Force Microscopy: A Nanoscopic Application in Molecular and Cell Biology. In: Cai, J. (eds) Atomic Force Microscopy in Molecular and Cell Biology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1510-7_5

Download citation

Publish with us

Policies and ethics