Skip to main content

Principles of Atomic Force Microscopy

  • Chapter
  • First Online:
Atomic Force Microscopy in Molecular and Cell Biology

Abstract

Clearly understanding the working principles of different modes of atomic force microscopy (AFM) is important for users to choose suitable measurement modes for their research projects, optimize working parameters, identify artifacts, and interpret data. In this chapter, conventional imaging modes and force modes will be discussed first, followed by the introduction of recent developments in AFM quantitative nano-mechanical properties measurement.

Since it was invented three decades ago (Binnig G, Quate CF, Gerber C, Phys Rev Lett 56:930–933, 1986), AFM has been becoming a more and more important instrument in nano science and technology. The uniqueness of AFM is its capability of providing nanometer spatial resolution in three dimensions while no vacuum or contrast reagent is needed. AFM has been extensively used in virtually every branch of science and engineering and contributes to many discoveries in nanomaterials, such as the discovery of graphene. In recent years, AFM has been further developed in three aspects. 1. conveying more material related information, such as mechanical, electrical, magnetic and thermal properties at nanometer scale; 2. integrating with different advanced optical techniques, including Raman, fluorescence, infrared spectroscopy; 3. incorporating with environment control for life science and material researches, such as temperature, liquid environment with pH and other ion strength control, light illumination. With these developments, AFM has been extending it applications beyond topographic imaging, such as polymer phase transition under different temperature, I-V characteristics in today’s semiconductor devices, live cell dynamics under different chemical/mechanical stimuli, molecular dynamics under different temperature and chemical environments.

On the other hand, the expanded capabilities of AFM make it difficult for users to choose a proper measurement mode, suitable probes and optimize operation parameters. Many efforts have been made to develop different smart scan modes, including peak force tapping developed by Bruker, where software can tune operation parameters to achieve optimized image quality. However, it is still users’ task to choose measurement modes, identify artifacts, interpret data for their research projects. All these need users to clearly understand the working principles of different modes. In this chapter, conventional imaging modes and force modes will be discussed first, followed by the introduction of recent developments in AFM quantitative nano-mechanical properties measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930–3.

    Article  CAS  Google Scholar 

  2. Israelachvili JN. Intermolecular and surface forces. London: Academic; 1992.

    Google Scholar 

  3. Heaton MG, Prater CB, Kjoller KJ Lateral and chemical force microscopy mapping surface friction and adhesion. Bruker application note AN5, Rev. A1. 2004

    Google Scholar 

  4. Fritz J. Cantilever biosensors. Analyst. 2008;133:855–63.

    Article  CAS  Google Scholar 

  5. Thimonier J, Montixi C, Chauvin JP, He HT, Rocca-Serra J, Barbet J. Thy-1 immunolabeled thymocyte microdomains studied with the atomic force microscope and the electron microscope. Biophys J. 1997;73:1627–32.

    Article  CAS  Google Scholar 

  6. Henderson E, Haydon PG, Sakaguchi DS. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science. 1992;257:1944–6.

    Article  CAS  Google Scholar 

  7. Nagayama S, Morimoto M, Kawabata K, Fujito Y, Ogura S, Abe K, Ushiki T, Ito E. AFM observation of three-dimensional fine structural changes in living neurons. Bioimages. 1996;4:111–6.

    Google Scholar 

  8. Babcock KL, Prater CB. Phase imaging: beyond topography. Bruker application note AN11, Rev. A1. 2004

    Google Scholar 

  9. McLean RS, Sauer BB. Tapping-mode AFM studies using phase detection for resolution of Nanophases in segmented polyurethanes and other block copolymers. Macromolecules. 1997;30:8314–7.

    Article  CAS  Google Scholar 

  10. Lv Z, Wang J, Chen G, Deng L. Imaging recognition events between human IgG and rat anti-human IgG by atomic force microscopy. Int J Biol Macromol. 2010;47:661–7.

    Article  CAS  Google Scholar 

  11. Bennett S. A history of control engineering, 1930–1955. London: IET; 1993.

    Book  Google Scholar 

  12. Ang KH, Chong G, Li Y. PID control system analysis, design, and technology. IEEE Trans Control Syst Technol. 2005;13:559–76.

    Article  Google Scholar 

  13. Sun W, Neuzil P, Kustandi TS, Oh S, Samper VD. The nature of the Gecko Lizard adhesive force. Biophys J. 2005;89:L14–7.

    Article  CAS  Google Scholar 

  14. Cleveland JP, Manne S, Bocek D, Hansma PK. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum. 1993;64:403–5.

    Article  CAS  Google Scholar 

  15. Ducker WA, Senden TJ, Pashley RM. Direct measurement of colloidal forces using an atomic force microscope. Nature. 1991;353:239–41.

    Article  CAS  Google Scholar 

  16. Preuss M, Butt H-J. Direct measurement of particle−bubble interactions in aqueous electrolyte: dependence on surfactant. Langmuir. 1998;14:3164–74.

    Article  CAS  Google Scholar 

  17. Greiner W, Neise L, Stöcker H. Thermodynamics and statistical mechanics. New York: Springer; 2001.

    Google Scholar 

  18. Butt H-J, Jaschke M. Calculation of thermal noise in atomic force microscopy. Nanotechnology. 1995;6:1–7.

    Article  Google Scholar 

  19. Hutter JL. Comment on tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements. Langmuir. 2005;21:2630–2.

    Article  CAS  Google Scholar 

  20. Ohler B. Cantilever spring constant calibration using laser Doppler vibrometry. Rev Sci Instrum. 2007;78:063701.

    Article  Google Scholar 

  21. Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20.

    Article  CAS  Google Scholar 

  22. Cappella B, Dietler G. Force-distance curves by atomic force microscopy. Surf Sci Rep. 1999;34:1–104.

    Article  CAS  Google Scholar 

  23. Belikov S, Erina N, Huang L, Su C, Prater C, Magonov S, Ginzburg V, McIntyre B, Lakrout H, Meyers G. Parametrization of atomic force microscopy tip shape models for quantitative nanomechanical measurements. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. 2009;27:984–92.

    Article  CAS  Google Scholar 

  24. Shao Z, Mou J, Czajkowsky DM, Yang J, Yuan J-Y. Biological atomic force microscopy: what is achieved and what is needed. Adv Phys. 1996;45:1–86.

    Article  CAS  Google Scholar 

  25. Bustamante C, Marko JF, Siggia ED, Smith S. Entropic elasticity of lambda-phage DNA. Science. 1994;265:1599–600.

    Article  CAS  Google Scholar 

  26. Butt H-J, Wolff EK, Gould SAC, Dixon Northern B, Peterson CM, Hansma PK. Imaging cells with the atomic force microscope. J Struct Biol. 1990;105:54–61.

    Article  CAS  Google Scholar 

  27. Krotil H-U, Stifter T, Waschipky H, Weishaupt K, Hild S, Marti O. Pulsed force mode: a new method for the investigation of surface properties. Surf Interface Anal. 1999;27:336–40.

    Article  CAS  Google Scholar 

  28. Su C, Lombrozo PM Method and apparatus of high speed property mapping. 2010

    Google Scholar 

  29. Pittenger B, Erina N, Su C. Quantitative mechanical property mapping at nanoscale with PeakForce QNM. Bruker application note AN128, Rev. B0. 2012

    Google Scholar 

  30. Pyne A, Thompson R, Leung C, Roy D, Hoogenboom BW. Single-molecule reconstruction of oligonucleotide secondary structure by atomic force microscopy. Small. 2014;10:3257–61.

    Article  CAS  Google Scholar 

  31. Swadener JG, George EP, Pharr GM. The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids. 2002;50:681–94.

    Article  Google Scholar 

  32. Rico F, Su C, Scheuring S. Mechanical mapping of single membrane proteins at submolecular resolution. Nano Lett. 2011;11:3983–6.

    Article  CAS  Google Scholar 

  33. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996;93:3477–81.

    Article  CAS  Google Scholar 

  34. Hinterdorfer P, Schilcher K, Baumgartner W, Gruber HJ, Schindler H. A mechanistic study of the dissociation of individual antibody-antigen pairs by atomic force microscopy. Nanobiology J Res Nanoscale Living Syst. 1998;4:39–50.

    Google Scholar 

  35. Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, Schindler H, Drenckhahn D. Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci. 2000;97:4005–10.

    Article  CAS  Google Scholar 

  36. Raab A, Han W, Badt D, Smith-Gill SJ, Lindsay SM, Schindler H, Hinterdorfer P. Antibody recognition imaging by force microscopy. Nat Biotechnol. 1999;17:901–5.

    Article  CAS  Google Scholar 

  37. Hinterdorfer P, Kienberger F, Raab A, Gruber HJ, Baumgartner W, Kada G, Riener C, Wielert-Badt S, Borken C, Schindler H. Poly(Ethylene Glycol): an ideal spacer for molecular recognition force microscopy/spectroscopy. Single Mol. 2000;1:99–103.

    Article  CAS  Google Scholar 

  38. Kiss E, Gölander C-G. Chemical derivatization of muscovite mica surfaces. Colloids Surf. 1990;49:335–42.

    Article  CAS  Google Scholar 

  39. Conti M, Falini G, Samorì B. How strong is the coordination bond between a histidine tag and Ni – Nitrilotriacetate? An experiment of Mechanochemistry on single molecules. Angew Chem. 2000;112:221–4.

    Article  Google Scholar 

  40. Pfreundschuh M, Alsteens D, Hilbert M, Steinmetz MO, Müller DJ. Localizing chemical groups while imaging single native proteins by high-resolution atomic force microscopy. Nano Lett. 2014;14:2957–64.

    Article  CAS  Google Scholar 

  41. Baruch DI, Ma XC, Pasloske B, Howard RJ, Miller LH. CD36 peptides that block cytoadherence define the CD36 binding region for Plasmodium falciparum-infected erythrocytes. Blood. 1999;94:2121–7.

    CAS  PubMed  Google Scholar 

  42. Albrecht TR, Grütter P, Horne D, Rugar D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys. 1991;69:668–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanxin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, W. (2018). Principles of Atomic Force Microscopy. In: Cai, J. (eds) Atomic Force Microscopy in Molecular and Cell Biology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1510-7_1

Download citation

Publish with us

Policies and ethics