Skip to main content

Blood Vessel Extraction from Fundus Image

  • Conference paper
  • First Online:
Emerging Technologies in Data Mining and Information Security

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 814))

Abstract

Almost 6.5 million people are affected due to glaucoma, diabetics every year in the USA (CDC, Diabetic retinopathy. National for chronic disease prevention and health promotion [Online]. Atlanta, GA [1]). The paper presents a computer-aided blood vessel detection from fundus imaging. This is mainly necessary for premature baby and diabetic patient (Karperien et al. Clin Ophthalmol 2(1):109 [2]). By proper screening of the vessel of patients, the medicine can be modified accordingly. For this case, DRIVE database (Staal et al. IEEE Trans Med Imaging 23(4):501–509 [3]) is chosen. And this detection scheme is fully automated and initially based on top-hat filtering on the input image. Iteratively, region growing and median filtering are applied on the initial segmented output and result in 94.02% accuracy when compared with the ground truth. Diabetic retinopathy analysis and retinal vessel tortuosity in premature infants can be determined using the proposed approach in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CDC: Diabetic Retinopathy. National for Chronic Disease Prevention and Health Promotion [Online], Atlanta, GA. http://www.cdc.gov/visionhealth/pdf/factsheet.pdf (2011, Mar 23)

  2. Karperien, A., Jelinek, H.F., Leandro, J.J., Soares, J.V., Cesar Jr, R.M., Luckie, A.: Automated detection of proliferative retinopathy in clinical practice. Clinical Ophthalmol. (Auckland, NZ) 2(1), 109 (2008)

    Google Scholar 

  3. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  4. Lakshmana, M. et al.: Central Retinal Vein Occlusion. https://emedicine.medscape.com/article/1223746-overview (2016)

  5. Jackway, P.T.: Improved morphological top-hat. Electron. Lett. 36(14), 1194–1195 (2000)

    Article  Google Scholar 

  6. Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Iterative vessel segmentation of fundus images. IEEE Trans. Biomed. Eng. 62(7), 173–1749 (2015)

    Article  Google Scholar 

  7. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, New York (1982)

    Google Scholar 

  8. Wang, Z., Zhang, D.: Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Trans. Circ. Syst. II: Analog Digital Sig. Process. 46(1), 78–80 (1999)

    Article  Google Scholar 

  9. Sun, T., Neuvo, Y.: Detail-preserving median based filters in image processing. Pattern Recogn. Lett. 15(4), 341–347 (1994)

    Article  Google Scholar 

  10. Chan, R.H., Ho, C.W., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005)

    Article  Google Scholar 

  11. Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)

    Article  Google Scholar 

  12. Nguyen, U.T., Bhuiyan, A., Park, L.A., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46(3), 703–715 (2013)

    Article  Google Scholar 

  13. Palomera-Perez, M.A., Martinez-Perez, M.E., Benitez-Perez, H., Ortega-Arjona, J.L.: Parallel multiscale feature extraction and region growing: application in retinal blood vessel detection. IEEE Trans. Inf. Technol. Biomed. 14(2), 500–506 (2010)

    Article  Google Scholar 

  14. Soares, J.V., Leandro, J.J., Cesar, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)

    Article  Google Scholar 

  15. Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)

    Article  Google Scholar 

  16. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  17. Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)

    Article  Google Scholar 

  18. Al-Diri, B., Hunter, A., Steel, D.: An active contour model for segmenting and measuring retinal vessels. IEEE Trans. Med. Imaging 28(9), 1488–1497 (2009)

    Article  Google Scholar 

  19. Lam, B.S., Gao, Y., Liew, A.W.C.: General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Trans. Med. Imaging 29(7), 1369–1381 (2010)

    Article  Google Scholar 

  20. Miri, M.S., Mahloojifar, A.: Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Trans. Biomed. Eng. 58(5), 118–1192 (2011)

    Article  Google Scholar 

  21. Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J. Biomed. Health Inform. 19(3), 1118–1128 (2005)

    Google Scholar 

  22. Budai, A., Bock, R., Maier, A., Hornegger, J., Michelson, G.: Robust vessel segmentation in fundus images. Int. J. Biomed. Imaging (2013)

    Google Scholar 

  23. Budai, A., Michelson, G., Hornegger, J.: Multiscale blood vessel segmentation in retinal fundus images. In: Bildverarbeitung für die Medizin, pp. 261–265 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abheek Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ray, A., Chakraborty, A., Roy, D., Sengupta, B., Biswas, M. (2019). Blood Vessel Extraction from Fundus Image. In: Abraham, A., Dutta, P., Mandal, J., Bhattacharya, A., Dutta, S. (eds) Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and Computing, vol 814. Springer, Singapore. https://doi.org/10.1007/978-981-13-1501-5_22

Download citation

Publish with us

Policies and ethics