Skip to main content

Automatic Geospatial Objects Classification from Satellite Images

  • Conference paper
  • First Online:
Emerging Technologies in Data Mining and Information Security

Abstract

LiDAR data has several advantages for classification of objects from satellite images. LiDAR data acquisition occurs in 24 h which contains height information of the objects. The morphological are used for extracting image features. As urban object detection is more difficult for shadow, bushes shrubs mixed with huts. This method gives an automatic approach for classification of the object from satellite images. It also presents an automatic approach for extraction of roads, vegetation with higher indexed and lowers indexed from the point clouds of LiDAR data. In the first step point Clouds from LiDAR data are preprocessed and then digital elevation model (DEM) are generated from that particular location. Then we have Created AOI using the normalized difference between DEM and DTM. Finally, the pixels of different objects are classified using spatial model. The experimental results are very promising. To identify terrain and non-terrain points from the raw LiDAR data an automated filtering algorithm is developed with the classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  Google Scholar 

  2. Im, J., Jensen, J.R., Tullis, J.A.: Object-based change detection using correlation image analysis and image segmentation. Int. J. Remote Sens. 29(2), 399–423 (2008)

    Article  Google Scholar 

  3. Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A.: The 3D hough transform for plane detection in point clouds: a review and a new accumulator design. 3D Res. 2, 1 (2011)

    Article  Google Scholar 

  4. Alpert, C., Yao, S.: Spectral partitioning: the more eigenvectors, the better. In: Conference on Design Automation, pp. 195–200 (1995)

    Google Scholar 

  5. Arikan, M., Schwärzler, M., Flöry, S.: O-snap: optimization-based snapping for modeling architecture. ACM Trans. Graph. 32, 1–15 (2013)

    Article  Google Scholar 

  6. Axelsson, P.: Processing of laser scanner data-algorithms and applications. ISPRS J. Photogramm. Remote Sens. 54, 138–147 (1999)

    Article  Google Scholar 

  7. Alharthy, A., Bethel, J.: Heuristic filtering and 3D feature extraction from LiDAR data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34, 23–28 (2002)

    Google Scholar 

  8. Arefi, H., Reinartz, P.: Building reconstruction using DSM and orthorectified images. Remote Sens. 5, 1681–1703 (2013)

    Article  Google Scholar 

  9. Axelsson, P.: DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 33, 110–117 (2000)

    Google Scholar 

  10. Nevatia, R., Ramesh, B.: Linear feature extraction and description. Comput. Vis. Graph. Image Process. 14, 257–269 (1980)

    Article  Google Scholar 

  11. Abdullah, A., Rahman, A., Vojinovic, Z.: LiDAR filtering algorithms for urban flood application: review on current algorithms and filters test. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 38, 30–36 (2009)

    Google Scholar 

  12. Ortner, M., Descombes, X., Zerubia, J.: A marked point process of rectangles and segments for automatic analysis of digital elevation models. IEEE Trans. Pattern Anal. Mach. Intell. 30(1), 105–119 (2008)

    Article  Google Scholar 

  13. Gueguen, L., Soille, P., Pesaresi, M.: Change detection based on information measure. IEEE Trans. Geosci. Remote Sens. 49(11), 4503–4515 (2011)

    Article  Google Scholar 

  14. Duda, R.0., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Comm. ACM, 15, 1972, pp. 11-15Nima Ekhtari, M.R. Sahebi, M.J. Valadan Zoej. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII. Part B3

    Google Scholar 

  15. Baltsavias, E.P.: A comparison between photogrammetry and laser scanning. ISPRS J. Photogramm. Remote Sens. 54, 83–94 (1999)

    Article  Google Scholar 

  16. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. Int. Conf. Comput. Vis. 1, 105–112 (2001)

    Google Scholar 

  17. Davidson, J.: Stereo photogrammetry in geotechnical engineering research. Photogramm. Eng. Remote Sens. Eng. 51, 1589–1596 (1985)

    Google Scholar 

  18. Peng, J., Zhang, D., Liu, Y.: An improved snake model for building detection from urban aerial images. Pattern Recogn. Lett. 26(5), 587–595 (2005)

    Article  Google Scholar 

  19. Kumar, S., Hebert, M.: Detection in natural images using a causal multiscale random field. Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. 1, 119–126 (2003)

    Google Scholar 

  20. d’Angelo, P., Lehner, M., Krauss, T.: Towards automated DEM generation from high resolution stereo satellite images. In: Proceedings of ISPRS Congress, Beijing, China, vol. 37, pp. 1137–1342, Part B4 (2008)

    Google Scholar 

  21. Awrangjeb, M., Ravanbakhsh, M., Fraser, C.S.: Automatic detection of residential buildings using lidar data and multispectral imagery. ISPRS J. Photogramm. Remote Sens. 65(5), 457–467 (2010)

    Article  Google Scholar 

  22. Landa, J., Procházka, D., Šťastný, J., 201. Point cloud processing for smart s stems. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis 61, 2415–2421

    Google Scholar 

  23. Sampath, A., Shan, J.: Building boundary tracing and regularization from airborne LiDAR point clouds. Photogramm. Eng. Remote Sens. 73, 805–812 (2007)

    Article  Google Scholar 

  24. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Z., Faugeras, O.: Finding clusters and planes from 3D line segments with application to 3D motion determination. In: European Conference on Computer Vision (ECCV), pp. 227–236 (1992)

    Google Scholar 

  26. Haala, N., Kada, M.: An update on automatic 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 65, 570–580 (2010)

    Article  Google Scholar 

  27. Huang, X., Zhang, L., Li, P.: Classification and extraction of spatial features in urban areas using high resolution multispectral imagery. IEEE Geosci. Remote Sens. Lett. 4(2), 260–264 (2007)

    Article  Google Scholar 

  28. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vis. 70, 109–131 (2006)

    Article  Google Scholar 

  29. Jin, X., Davis, C.H.: Automated building extraction from high-resolution satellite imagery in urban areas using structural, contextual, and spectral information. EURASIP J. Appl. Signal Process. 2005, 2198–2206 (2005)

    MATH  Google Scholar 

  30. Ren, Z., Zhou, G., Cen, M., Zhang, T., Zhang, Q.: A novel method for extracting building from lidar data-c-s method. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII. Part B1

    Google Scholar 

  31. Blaschke, T.D., Evans, S., Haklay, M.: Visualizing the city: communicating urban design to planners and decision-makers. Planning support systems: integrating geographic information systems, models, and visualization tools, pp. 405–443 (2001)

    Google Scholar 

  32. Bernardini, F., Bajaj, C.: Sampling and reconstructing manifolds using alpha-shapes. In: 9th Canadian Conference on Computational Geometry, pp. 193–198 (1997)

    Google Scholar 

  33. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  34. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization, 1st edn. Wiley, New York, NY, USA (1998)

    MATH  Google Scholar 

  35. Dorninger, P., Pfeifer, N.: A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors 8, 7323–7343 (2008)

    Article  Google Scholar 

  36. Song, Z., Pan, C., Yang, Q.: A region-based approach to building detection in densely build-up high resolution satellite image. In: Proceedings International Conference on Image Processing, pp. 3225–3228 (2006)

    Google Scholar 

  37. Karantzalos, K., Paragios, N.: Recognition-driven two-dimensional competing priors toward automatic and accurate building detection. IEEE Trans. Geosci. Remote Sens. 47(1), 133–144 (2009)

    Article  Google Scholar 

  38. Tsai, V.: A comparative study on shadow compensation of color aerial images in invariant color models. IEEE Trans. Geosci. Remote Sens. 44(6), 1661–1671 (2006)

    Article  Google Scholar 

  39. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 1–14 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shariar Rahaman , Md. Abdul Alim Sheikh or Chinmaya Kumar Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahaman, S., Abdul Alim Sheikh, M., Kole, A., Maity, T., Pradhan, C.K. (2019). Automatic Geospatial Objects Classification from Satellite Images. In: Abraham, A., Dutta, P., Mandal, J., Bhattacharya, A., Dutta, S. (eds) Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and Computing, vol 813. Springer, Singapore. https://doi.org/10.1007/978-981-13-1498-8_10

Download citation

Publish with us

Policies and ethics