Skip to main content

Parcellation Analysis of Language Areas of the Brain and Its Clinical Association in Children with Autism Spectrum Disorder

  • Conference paper
  • First Online:
ICTMI 2017

Abstract

Introduction Children with autism spectrum disorder (ASD) are reported to have atypical symmetry patterns and volumes of language-related brain areas. There is a dearth of evaluation of the significance of this finding clinically for children with ASD in India. Objective Perform brain morphometric analysis in children with ASD and evaluate the left–right asymmetry of primary and association areas of language and its clinical implications. Methodology Drug-naïve children with ASD who visited developmental paediatrics, aged 3–12 years, were recruited for the study after informed consent. The diagnosis was by a multidisciplinary team. All children underwent assessments and MRI brain scan. Postprocessing included cortical reconstruction and volumetric segmentation of unimodal and higher order association areas related to language. The quantitative neuroimaging results were analysed with respect to both autism severity and ability test scores. Results Analysis included 10 children (8 males and 2 females) aged 36–99 months. Autism severity score ranged from 30.5 to 40 on CARS. The unimodal association areas of pars opercularis and planum temporale indicated left asymmetry, and in the higher association areas, supramarginal gyrus had left asymmetry, while pars triangularis displayed right asymmetry. The supramarginal gyrus indicated a left asymmetry in males, while it showed right asymmetry in females. Children who had higher autism symptoms had significantly lower left frontal opercular volume compared to those with lower autism symptom severity. Conclusion Asymmetry patterns of language areas of brain in children with ASD and low left frontal opercular volumes in children with higher autism symptomatology indicate anomalous fronto-temporal grey matter development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achenbach TM, Rescorla L (2000) Manual for the ASEBA preschool forms and profiles: an integrated system of multi-informant assessment. University of Vermont, Research Center for Children, Youth & Families, Burlington

    Google Scholar 

  2. Achenbach TM, Rescorla L (2001) Manual for the ASEBA school-age forms and profiles: an integrated system of mult-informant assessment. University of Vermont, Research Center for Children, Youth and Families, Burlington

    Google Scholar 

  3. Anagnostou E, Taylor MJ (2011) Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here. Mol Autism 2(1):4. https://doi.org/10.1186/2040-2392-2-4

    Article  Google Scholar 

  4. Andersson GW, Gillberg C, Miniscalco C (2013) Pre-school children with suspected autism spectrum disorders: do girls and boys have the same profiles? Res Dev Disabil 34(1):413–422

    Article  Google Scholar 

  5. Assis ZA, Bagepally BS, Saini J et al (2015) Childhood autism in India: A case-control study using tract-based spatial statistics analysis. Indian J Psychiatry 57(3):272–277. https://doi.org/10.4103/0019-5545.166622

    Article  Google Scholar 

  6. Boellaard R, O’doherty MJ, Weber WA et al (2009) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181. https://doi.org/10.1007/s00259-009-1297-4

    Article  Google Scholar 

  7. Bölte S, Duketis E, Poustka F et al (2011) Sex differences in cognitive domains and their clinical correlates in higher-functioning autism spectrum disorders. Autism 15:497–511

    Article  Google Scholar 

  8. Brezis RS, Weisner TS, Daley TC et al (2015) Parenting a child with autism in India: narratives before and after a parent-child intervention program. Culture, Med Psychiatry 39(2):277–298. https://doi.org/10.1007/s11013-015-9434-y

    Article  Google Scholar 

  9. Bzoch KR, Leagur R, Brown VL (2006) The receptive-expressive emergent language scale -3. Pro-Ed, Autin, TX

    Google Scholar 

  10. Chen R, Jiao Y, Herskovits EH (2011) Structural MRI in autism spectrum disorder. Pediatric Res 69(5 Pt 2):63R–68R. https://doi.org/10.1203/PDR.0b013e318212c2b3

    Article  Google Scholar 

  11. Chen YH, Rodgers J, Mcconachie H (2009) Restricted and repetitive behaviours, sensory processing and cognitive style in children with autism spectrum disorders. J Autism Dev Disorders 39(4):635–642

    Article  Google Scholar 

  12. Chlebowski C, Green JA, Barton ML et al (2010) Using the childhood autism rating scale to diagnose autism spectrum disorders. J Autism Dev Disorders 40(7):787–799. https://doi.org/10.1007/s10803-009-0926-x

    Article  Google Scholar 

  13. Courchesne E, Karns CM, Davis HR et al (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57(2):245–254

    Article  Google Scholar 

  14. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I. Segmentation Surface Eeconstruction. NeuroImage 9:179–194. https://doi.org/10.1006/nimg.1998.0395

    Article  Google Scholar 

  15. Dale AM, Sereno MI (1993) Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cognitive Neurosci 5:162–176. https://doi.org/10.1162/jocn.1993.5.2.162

    Article  Google Scholar 

  16. De Fosse L, Hodge SM, Makris N et al (2004) Language-association cortex asymmetry in autism and specific language impairment. Ann Neurology 56:757–766. https://doi.org/10.1002/ana.20275

    Article  Google Scholar 

  17. Divan G, Vajaratkar V, Desai MU et al (2012) Challenges, coping strategies, and unmet needs of families with a child with autism spectrum disorder in Goa. India Autism Res 5:190–200. https://doi.org/10.1002/aur.1225

    Article  Google Scholar 

  18. Ecker C, Ginestet C, Feng Y et al (2013) Brain surface anatomy in adults with autism: the relationship between surface area, cortical thickness, and autistic symptoms. JAMA Psychiatry 70:59–70. https://doi.org/10.1001/jamapsychiatry.2013.265

    Article  Google Scholar 

  19. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc National Acad Sci United States Am 97:11050–11055. https://doi.org/10.1073/pnas.200033797

    Article  Google Scholar 

  20. Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20:70–80. https://doi.org/10.1109/42.906426

    Article  Google Scholar 

  21. Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207 https://doi.org/10.1006/nimg.1998.0396

    Article  Google Scholar 

  22. Fischl, B., Sereno, M.I., Tootell, R.B. et al. (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping 8:272–284

    Article  Google Scholar 

  23. Fischl B, Van Der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cerebral cortex (New York, N.Y.: 1991) 14:11–22. https://doi.org/10.1093/cercor/bhg087

    Article  Google Scholar 

  24. Galaburda AM, Rosen GD, Sherman GF (1990) Individual variability in cortical organization: its relationship to brain laterality and implications to function. Neuropsychologia 28:529–546

    Article  Google Scholar 

  25. Ghosh A, Mahajan PB, Tripathy PR et al (2015) Exploring health situation of indian children with autism spectrum disorder using autism treatment evaluation checklist (ATEC) in an Urban Area of Odisha: a case study. J Clin Diagnostic Res: JCDR 9:VC05-VC08 (2015). https://doi.org/10.7860/jcdr/2015/16522.6982

  26. Griffiths R (1996) The Griffiths mental development scales from birth to two years, manual, the 1996 revision. Assoc Res Infant Child Development, Test Agency, Thames, Henley

    Google Scholar 

  27. Ha S, Sohn I-J, Kim N et al (2015) Characteristics of brains in autism spectrum disorder: structure, function and connectivity across the lifespan. Exp Neurobiol 24:273–284. https://doi.org/10.5607/en.2015.24.4.273

    Article  Google Scholar 

  28. Hartley SL, Sikora DM (2009) Sex differences in autism spectrum disorder: an examination of developmental functioning, autistic symptoms, and coexisting behavior problems in toddlers. J Autism Dev Disorders 39:1715–1722

    Article  Google Scholar 

  29. Hartley SL, Sikora DM, Mccoy R (2008) Prevalence and risk factors of maladaptive behaviour in young children with autistic disorder. J Intellectual Disability Res 52:819–829

    Article  Google Scholar 

  30. Hazlett HC, Poe MD, Gerig G et al (2006) Cortical gray and white brain tissue volume in adolescents and adults with autism. Biol Psychiatry 59:1–6. https://doi.org/10.1016/j.biopsych.2005.06.015

    Article  Google Scholar 

  31. Herbert MR (2005) Large brains in autism: the challenge of pervasive abnormality. Neuroscientist: A Rev J Bringing Neurobiol, Neurology Psychiatry 11:417–440. https://doi.org/10.1177/0091270005278866

    Article  Google Scholar 

  32. Herbert MR, Harris GJ, Adrien KT et al (2002) Abnormal asymmetry in language association cortex in autism. Ann Neurology 52:588–596. https://doi.org/10.1002/ana.10349

    Article  Google Scholar 

  33. Herbert MR, Ziegler DA, Deutsch CK et al (2005) Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain: A J Neurology 128:213–226. https://doi.org/10.1093/brain/awh330

    Article  Google Scholar 

  34. Herbert MR, Ziegler DA, Makris N et al (2004) Localization of white matter volume increase in autism and developmental language disorder. Ann Neurology 55:530–540

    Article  Google Scholar 

  35. Joseph RM, Fricker Z, Fenoglio A et al (2014) Structural asymmetries of language-related gray and white matter and their relationship to language function in young children with ASD. Brain Imaging Behavior 8:60–72. https://doi.org/10.1007/s11682-013-9245-0

    Article  Google Scholar 

  36. Knaus TA, Silver AM, Dominick KC et al (2009) Age-related changes in the anatomy of language regions in autism spectrum disorder. Brain Imaging Behavior 3:51–63. https://doi.org/10.1007/s11682-008-9048-x

    Article  Google Scholar 

  37. Knaus TA, Tager-Flusberg H, Foundas AL (2012) Sylvian fissure and parietal anatomy in children with autism spectrum disorder. Behav Neurology 25:327–339

    Article  Google Scholar 

  38. Kommu JVS, Gayathri KR, Kommu JVS, Srinath S et al (2017) Profile of two hundred children with Autism Spectrum Disorder from a tertiary child and adolescent psychiatry centre. Asian J Psychiatry 28:51–56. https://doi.org/10.1016/j.ajp.2017.03.017

    Article  Google Scholar 

  39. Lai MC, Lombardo MV, Baron-Cohen S (2014) Autism. Lancet 383:896–910. https://doi.org/10.1016/s0140-6736(13)61539-1

    Article  Google Scholar 

  40. Malhi P, Singhi P (2014) A retrospective study of toddlers with autism spectrum disorder: clinical and developmental profile. Ann Indian Acad Neurology 17:25–29. https://doi.org/10.4103/0972-2327.128537

    Article  Google Scholar 

  41. Malin A (1971) Indian Adaptation of the Vineland Social Maturity Scale. Indian Psychological Corporation, Lucknow

    Google Scholar 

  42. Mhatre D, Bapat D, Udani V (2016) Long-term outcomes in children diagnosed with autism spectrum disorders in India. J Autism Dev Disorders 46(3):1–13. https://doi.org/10.1007/s10803-015-2613-4

    Article  Google Scholar 

  43. Miyake K, Hirasawa T, Koide T et al (2012) Epigenetics in autism and other neurodevelopmental diseases. Adv Exp Med Miology 724:91–98. https://doi.org/10.1007/978-1-4614-0653-2_7

    Article  Google Scholar 

  44. Raina SK, Kashyap V, Bhardwaj AK et al (2015) Prevalence of autism spectrum disorders among children (1–10 years of age)—Findings of a mid-term report from Northwest India. J Postgraduate Med 61:243–246. https://doi.org/10.4103/0022-3859.166512

    Article  Google Scholar 

  45. Rangasamy S, D’mello SR, Narayanan V (2013) Epigenetics, autism spectrum, and neurodevelopmental disorders. Neurotherapeutics: J Am Soc Exp NeuroTherapeutics 10:742–756. https://doi.org/10.1007/s13311-013-0227-0

    Article  Google Scholar 

  46. Rojas DC, Camou SL, Reite ML et al (2005) Planum temporale volume in children and adolescents with autism. J Autism Dev Disord 35:479–486. https://doi.org/10.1007/s10803-005-5038-7

    Article  Google Scholar 

  47. Rudra A, Belmonte MK, Soni PK et al (2017) Prevalence of autism spectrum disorder and autistic symptoms in a school-based cohort of children in Kolkata, India. Autism Res. https://doi.org/10.1002/aur.1812

    Article  Google Scholar 

  48. Schopler EVBM, Wellman Gj, Love Sr: (CARSTM2) Childhood autism rating scaleTM, 2nd edn. Manual. Westerm Psychological Sevices (2010)

    Google Scholar 

  49. Schumann CM, Hamstra J, Goodlin-Jones BL et al (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci: Official J Soc Neurosci 24:6392–6401. https://doi.org/10.1523/jneurosci.1297-04.2004

    Article  Google Scholar 

  50. Segonne F, Dale AM, Busa E et al (2004) A hybrid approach to the skull stripping problem in MRI. NeuroImage 22:1060–1075. https://doi.org/10.1016/j.neuroimage.2004.03.032

    Article  Google Scholar 

  51. Segonne F, Pacheco J, Fischl B (2007) Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans Med Imaging 26:518–529. https://doi.org/10.1109/TMI.2006.887364

    Article  Google Scholar 

  52. Simonoff E, Jones CRG, Baird G et al (2013) The persistence and stability of psychiatric problems in adolescents with autism spectrum disorders. J. Child Psych Psychiatry Allied Disciplines 54:186–194

    Article  Google Scholar 

  53. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97. https://doi.org/10.1109/42.668698

    Article  Google Scholar 

  54. Verhoeven JS, De Cock P, Lagae L et al (2010) Neuroimaging of autism. Neuroradiology 52:3–14. https://doi.org/10.1007/s00234-009-0583-y

    Article  Google Scholar 

  55. Watts TJ (2008) The Pathogenesis of autism. Clin Med Pathol 1:99–103

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the Indian Council of Medical Research to BK (Autism/57/2011-NCD-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beena Koshy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koshy, B., Thomas, T.H.M., Chitra, D., Varghese, A., Beulah, R., Mani, S. (2019). Parcellation Analysis of Language Areas of the Brain and Its Clinical Association in Children with Autism Spectrum Disorder. In: Gulyás, B., Padmanabhan, P., Fred, A., Kumar, T., Kumar, S. (eds) ICTMI 2017. Springer, Singapore. https://doi.org/10.1007/978-981-13-1477-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1477-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1476-6

  • Online ISBN: 978-981-13-1477-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics