Skip to main content

Multi-Objective Optimization and Cluster-Wise Regression Analysis to Establish Input–Output Relationships of a Process

  • Chapter
  • First Online:
Multi-Objective Optimization

Abstract

Multi-objective evolutionary algorithm (MOEA) is an efficient tool for solving different problems in engineering and various other fields. This chapter deals with an approach used to establish input–output relationships of a process utilizing the concepts of multi-objective optimization and cluster-wise regression analysis. At first, an initial Pareto-front is obtained for a given process using a multi-objective optimization technique. Then, these Pareto-optimal solutions are applied to train a neuro-fuzzy system (NFS). The training of the NFS is implemented using a meta-heuristic optimization algorithm. Now, for generating a modified Pareto-front, the trained NFS is used in MOEA for evaluating the objective function values. In this way, a new set of trade-off solutions is formed. These modified Pareto-optimal solutions are then clustered using a clustering algorithm. Cluster-wise regression analysis is then carried out to determine input–output relationships of the process. These relationships are found to be superior in terms of precision to that of the equations obtained using conventional statistical regression analysis on the experimental data. To validate the performance of the developed method, an engineering problem, related to the electron beam welding (EBW) of SS 304, is selected and its input–output relationships have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. Aghbashlo, S. Hosseinpour, M. Tabatabaei, H. Younesi, G. Najafpour, On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFIS–NSGA-II (adaptive neuro-fuzzy inference system–non-dominated sorting genetic algorithm-II). Energy 96, 507–520 (2016)

    Article  Google Scholar 

  • M.H. Ahmadi, M. Mehrpooya, Thermo-economic modeling and optimization of an irreversible solar-driven heat engine. Energy Convers. Manag. 103, 616–622 (2015)

    Article  Google Scholar 

  • M.H. Ahmadi, M.A. Ahmadi, S.A. Sadatsakkak, Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs). Renew. Sustain. Energy Rev. 51, 1055–1070 (2015)

    Article  Google Scholar 

  • M.H. Ahmadi, M.A. Ahmadi, A. Mellit, F. Pourfayaz, M. Feidt, Thermodynamic analysis and multi objective optimization of performance of solar dish Stirling engine by the centrality of entransy and entropy generation. Int. J. Electr. Power Energy Syst. 78, 88–95 (2016)

    Article  Google Scholar 

  • M. Asadi-Eydivand, M. Solati-Hashjin, A. Fathi, M. Padashi, N.A.A. Osman, Optimal design of a 3D-printed scaffold using intelligent evolutionary algorithms. Appl. Soft Comput. 39, 36–47 (2016)

    Article  Google Scholar 

  • S.S. Askar, A. Tiwari, Multi-objective optimisation problems: a symbolic algorithm for performance measurement of evolutionary computing techniques. in Proceedings of EMO 2009 (Springer, 2009), pp. 169–182

    Google Scholar 

  • S. Askar, A. Tiwari, Finding innovative design principles for multiobjective optimization problems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev 41(4), 554–559 (2011)

    Google Scholar 

  • S. Bandaru, C.C. Tutum, K. Deb, J.H. Hattel, Higher-level innovization: a case study from friction stir welding process optimization. Evol. Comput. (CEC) 2011, 2782–2789 (2011)

    Google Scholar 

  • S. Bandaru, T. Aslam, A.H. Ng, K. Deb, Generalized higher-level automated innovization with application to inventory management. Eur. J. Oper. Res. 243(2), 480–496 (2015)

    Article  MathSciNet  Google Scholar 

  • J.C. Bezdek, Fuzzy mathematics in pattern classification. Ph.D. thesis, Applied Math. Center, Cornell University, 1973

    Google Scholar 

  • H.R. Berenji, P. Khedkar, Learning and tuning fuzzy logic controllers through reinforcements. IEEE Trans. Neural Netw. 3(5), 724–740 (1992)

    Article  Google Scholar 

  • A.E. Brownlee, J.A. Wright, Constrained, mixed-integer and multi-objective optimisation of building designs by NSGA-II with fitness approximation. Appl. Soft Comput. 33, 114–126 (2015)

    Article  Google Scholar 

  • D. Das, D.K. Pratihar, G.G. Roy, Electron beam melting of steel plates: temperature measurement using thermocouples and prediction through finite element analysis. CAD/CAM, Robotics and Factories of the Future (Springer, 2016), pp. 579–588

    Google Scholar 

  • D. Das, D.K. Pratihar, G.G. Roy, A.R. Pal, Phenomenological model-based study on electron beam welding process, an input-output modeling using neural networks trained by back-propagation algorithm, genetic algorithm, particle swarm optimization algorithm and bat algorithm. Appl. Intell. (2017). https://doi.org/10.1007/s10489-017-1101-2

    Article  Google Scholar 

  • K. Deb, Unveiling innovative design principles by means of multiple conflicting objectives. Eng. Optim. 35(5), 445–470 (2003)

    Article  Google Scholar 

  • K. Deb, S. Jain, Multi-speed gearbox design using multi-objective evolutionary algorithms. Trans. Am. Soc. Mech. Eng. J. Mech. Des. 125(3), 609–619 (2003)

    Google Scholar 

  • K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  • K. Deb, A. Srinivasan, Innovization: Discovery of innovative design principles through multiobjective evolutionary optimization. Multiobjective Problem Solving from Nature, pp. 243–262 (2008)

    Google Scholar 

  • K. Deb, S. Gupta, D. Daum, J. Branke, A.K. Mall, D. Padmanabhan, Reliability-based optimization using evolutionary algorithms. IEEE Trans. Evol. Comput. 13(5), 1054–1074 (2009)

    Article  Google Scholar 

  • K. Deb, K. Sindhya, Deciphering innovative principles for optimal electric brushless DC permanent magnet motor design. in IEEE World Congress on Computational Intelligence Evolutionary Computation 2008, pp. 2283–2290 (2008)

    Google Scholar 

  • K. Deb, S. Bandaru, D. Greiner, A. Gaspar-Cunha, C.C. Tutum, An integrated approach to automated innovization for discovering useful design principles: case studies from engineering. Appl. Soft Comput. 15, 42–56 (2014)

    Article  Google Scholar 

  • C. Dudas, M. Frantzén, A.H. Ng, A synergy of multi-objective optimization and data mining for the analysis of a flexible flow shop. Robot. Comput. Integr. Manuf. 27(4), 687–695 (2011)

    Article  Google Scholar 

  • M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise. in Proceedings of KDD 1996, vol. 34, pp. 226–231 (1996)

    Google Scholar 

  • M.A. Gil, Fuzziness and loss of information in statistical problems. IEEE Trans. Syst. Man Cybern. 17(6), 1016–1025 (1987)

    Article  Google Scholar 

  • M.A. Gil, P. Gil, Fuzziness in the experimental outcomes: comparing experiments and removing the loss of information. J. Stat. Plan. Inference 31(1), 93–111 (1992)

    Article  MathSciNet  Google Scholar 

  • D.E. Goldberg, The Design of Innovation: Lessons from and for Competent Genetic Algorithms, vol. 7 (Springer Science & Business Media, 2002)

    Google Scholar 

  • http://www.minitab.com

  • J. Horn, N. Nafpliotis, D.E. Goldberg, A niched Pareto genetic algorithm for multiobjective optimization. in IEEE World Congress on Computational Intelligence Evolutionary Computation 1994, pp. 82–87 (1994)

    Google Scholar 

  • H. Ishibuchi, H. Tanaka, H. Okada, Interpolation of fuzzy if-then rules by neural networks. Int. J. Approx. Reason. 10(1), 3–27 (1994)

    Article  Google Scholar 

  • J.-S. Jang, ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  • Y. Jarraya, S. Bouaziz, A.M. Alimi, A. Abraham, Evolutionary multi-objective optimization for evolving hierarchical fuzzy system. Evol. Comput. (CEC) 2015, 3163–3170 (2015)

    Google Scholar 

  • M. Jha, D.K. Pratihar, A. Bapat, V. Dey, M. Ali, A. Bagchi, Modeling of input-output relationships for electron beam butt welding of dissimilar materials using neural networks. Int. J. Comput. Intell. Appl. 13(03), 1450016 (2014)

    Article  Google Scholar 

  • J. Kar, S. Mahanty, S.K. Roy, G. Roy, Estimation of average spot diameter and bead penetration using process model during electron beam welding of AISI 304 stainless steel. Trans. Indian Inst. Met. 68(5), 935–941 (2015)

    Article  Google Scholar 

  • J.M. Keller, R.R. Yager, H. Tahani, Neural network implementation of fuzzy logic. Fuzzy Sets Syst. 45(1), 1–12 (1992)

    Article  MathSciNet  Google Scholar 

  • F. Khoshbin, H. Bonakdari, S.H. Ashraf Talesh, I. Ebtehaj, A.H. Zaji, H. Azimi, Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs. Eng. Optim. 48(6), 933–948 (2016)

    Article  Google Scholar 

  • J. Knowles, D. Corne, The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation. CEC 99, 98–105 (1999)

    Google Scholar 

  • K. Lwin, R. Qu, G. Kendall, A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization. Appl. Soft Comput. 24, 757–772 (2014)

    Article  Google Scholar 

  • E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7(1), 1–13 (1975)

    Article  Google Scholar 

  • M. Marinaki, Y. Marinakis, G.E. Stavroulakis, Fuzzy control optimized by a multi-objective differential evolution algorithm for vibration suppression of smart structures. Comput. Struct. 147, 126–137 (2015)

    Article  Google Scholar 

  • K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12 (Springer Science & Business Media, 1999)

    Google Scholar 

  • S. Mitra, S.K. Pal, Neuro-fuzzy expert systems: relevance, features and methodologies. IETE J. Res. 42(4–5), 335–347 (1996)

    Article  Google Scholar 

  • S. Obayashi, D. Sasaki, Visualization and data mining of Pareto solutions using self-organizing map. in Proceedings of EMO 2003 (Springer, 2003), pp. 796–809

    Google Scholar 

  • D.K. Pratihar, Soft Computing (Alpha Science International, Ltd, 2007)

    Google Scholar 

  • S.A. Sadatsakkak, M.H. Ahmadi, M.A. Ahmadi, Optimization performance and thermodynamic analysis of an irreversible nano scale Brayton cycle operating with Maxwell-Boltzmann gas. Energy Convers. Manag. 101, 592–605 (2015)

    Article  Google Scholar 

  • H.A. Taboada, D.W. Coit, Data mining techniques to facilitate the analysis of the Pareto-optimal set for multiple objective problems. in Proceedings 2006, Institute of Industrial and Systems Engineers (IISE) IIE Annual Conference, pp. 1–6 (2006)

    Google Scholar 

  • H. Takagi, I. Hayashi, NN-driven fuzzy reasoning. Int. J. Approx. Reason. 5(3), 191–212 (1991)

    Article  Google Scholar 

  • H. Takagi, N. Suzuki, T. Koda, Y. Kojima, Neural networks designed on approximate reasoning architecture and their applications. IEEE Trans. Neural Netw. 3(5), 752–760 (1992)

    Article  Google Scholar 

  • C. Wang, X. Li, X. Zhou, A. Wang, N. Nedjah, Soft computing in big data intelligent transportation systems. Appl. Soft Comput. 38, 1099–1108 (2016)

    Article  Google Scholar 

  • J. Yao, M. Dash, S. Tan, H. Liu, Entropy-based fuzzy clustering and fuzzy modeling. Fuzzy Sets Syst. 113(3), 381–388 (2000)

    Article  Google Scholar 

  • Z.-H. Zhan, J. Li, J. Cao, J. Zhang, H.S.-H. Chung, Y.-H. Shi, Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems. IEEE Trans. Cybern. 43(2), 445–463 (2013)

    Article  Google Scholar 

  • Q. Zhang, H. Li, MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  • Y.-J. Zheng, S.-Y. Chen, H.-F. Ling, Evolutionary optimization for disaster relief operations: a survey. Appl. Soft Comput. 27, 553–566 (2015)

    Article  Google Scholar 

  • E. Zitzler, L. Thiele, An evolutionary algorithm for multiobjective optimization: the strength Pareto approach (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Kumar Pratihar .

Editor information

Editors and Affiliations

Appendices

Appendices

Appendix 1 collected experimental data

Sl. no.

Power (W)

Speed (mm/min)

Depth of penetration (mm)

Bead width (mm)

1

3200

1800

2.73

4.82

2

3200

1500

3.27

5.36

3

4000

1800

3.43

4.46

4

3200

1200

4

3.4

5

4000

1500

4.13

4.4

6

4800

1800

3.41

5.54

7

5600

1800

4.55

3.4

8

4800

1500

4.5

3.5

9

4000

1200

4.6

4.7

10

3200

900

3.9

6.92

11

5600

1500

4.8

5.1

12

4800

1200

5.29

5.31

13

4000

900

5.69

4.99

14

5600

1200

5.8

5.5

15

4800

900

7.15

5

16

5600

900

8.2

5.6

Appendix 2 Experimental data collected for testing the performance of the developed approach

Sl. no.

Power (W)

Speed (mm/min)

Depth of penetration (mm)

Bead width (mm)

1

4800

1650

4.37

3.38

2

4800

1325

5.03

3.87

3

5200

1650

4.39

3.86

4

5200

1325

5.27

4.51

5

5600

1000

7.91

5.28

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, A.K., Das, D., Pratihar, D.K. (2018). Multi-Objective Optimization and Cluster-Wise Regression Analysis to Establish Input–Output Relationships of a Process. In: Mandal, J., Mukhopadhyay, S., Dutta, P. (eds) Multi-Objective Optimization. Springer, Singapore. https://doi.org/10.1007/978-981-13-1471-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1471-1_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1470-4

  • Online ISBN: 978-981-13-1471-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics