Skip to main content

Treatment and Recycling of Wastewater from Tannery

  • Chapter
  • First Online:

Abstract

Tanneries are one of the most important industries of the world, but discharge toxic hexavalent chromium through their waste water into the environment beyond the permissible limit. Such waste water may cause significant damage to the agricultural lands and receiving water bodies due to its higher toxicity and high COD and BOD values and thus is a matter of global concern. To reduce the impact of discharged waste water on all living beings and the environment, several conventional physico-chemical treatment methods are developed to remediate metal polluted sites. However, these methods are costly due to use of non-regenerable materials, high operating cost and generate toxic sludge. Microbial bioremediation is a relatively cheaper and eco-friendly technique for the removal of heavy metals and chloroorganics from tannery waste water and thus has wider implications. Also, there is a chance to recover the economically valuable metal for reuse. Among various microbes, bacteria have proven to be very effective in removing Cr (VI) and pentachlorophenol from tannery waste water. The treated waste water can also be used for various non-potable purposes including agriculture and also during leather tanning. It will ultimately minimize water scarcity problem and will increase the productivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdallh MN, Abdelhalim WS, Abdelhalim HS (2016) Biological treatment of leather tanneries wastewater effluent-bench scale modeling. Int J Eng Sci Comp 6:2271–2286

    Google Scholar 

  • Ackerley DF, Gonzalez CF, Park CH et al (2004) Chromate reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70:873–882

    Article  CAS  Google Scholar 

  • Aguilera S, Aguilar ME, Chavez MP et al (2004) Essential residues in the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett 232:107–112

    Article  CAS  Google Scholar 

  • Ahamed MIN, Kashif PM (2014) Safety disposal of tannery effluent sludge: challenges to researchers-a review. Int J Pharma Sci Res 5:733–736

    CAS  Google Scholar 

  • Ahmed FN, Lan CQ (2012) Treatment of landfill leachate using membrane bioreactors: a review. Desalination 287:41–54

    Article  CAS  Google Scholar 

  • Akan JC (2007) Assessment of industrial tannery effluent from Kano Metropolis, Kano Nigeria. J Appl Sci 7(19):2788–2793

    Article  CAS  Google Scholar 

  • Anglada A, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84(12):1747–1755

    Article  CAS  Google Scholar 

  • Aravindhan R, Madhan B, Rao R et al (2004) Bioaccumulation of chromium from tannery waste water an approach for chrome recovery and reuse. Environ Sci Technol 38:300–306

    Article  CAS  Google Scholar 

  • Armienta MA, Morton O, Rodriguez R et al (2001) Chromium in a tannery waste water irrigated area, Leon Valley, Mexico. Bull Environ Contam Toxicol 66:189–195

    CAS  Google Scholar 

  • Badawy MI, Ali MEM (2006) Fenton’s per oxidation and coagulation processes for the treatment of combined industrial and domestic waste water. J Hazard Mater 136:961–966

    Article  CAS  Google Scholar 

  • Bevenue A, Beckman H (1967) Pentachlorophenol: a discussion of its properties and its occurrence as a residue in human and animal tissues. Residue Rev 19:83–134

    CAS  Google Scholar 

  • Birjandi N, Younesi H, Bahramifar N (2016) Treatment of wastewater effluents from paper- recycling plants by coagulation process and optimization of treatment conditions with response surface methodology. Appl Water Sci 6:339–348

    Article  CAS  Google Scholar 

  • Bopp LH, Ehrlich HL (1988) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol 150:426–431

    Article  CAS  Google Scholar 

  • Bosinc M, Buljan J, Daniels RP (2000) Regional program for pollution control, tanning industry US/RAS/92/120, South-East Asia, 1–14

    Google Scholar 

  • Calheiros CSC, Quitério PVB, Silva G, Crispim LFC, Brix H, Moura SC, Castro PML (2012) Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. J Environ Manag 95(1):66–71

    Article  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int J Biodeterior Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Chhikara S, Hooda A, Rana L et al (2010) Cr6+ biosorption by immobilized Aspergillus niger in continuous flow system with special reference to FTIR analysis. J Environ Biol 31(5):561–566

    CAS  Google Scholar 

  • Chung YJ, Choi HN, Lee SE et al (2004) Treatment of tannery waste water with high nitrogen content using anoxic/oxic membrane bio-reactor (MBR). J Environ Sci Health All 39:1881–1890

    Article  CAS  Google Scholar 

  • Congevaram S, Dhanarani S, Park J, Dexilin M et al (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  CAS  Google Scholar 

  • Cooman K, Gajardo M, Nieto J, Bornhardt C, Vidal G (2003) Tannery wastewater characterization and toxicity effects onDaphnia spp. Environ Toxicol 18(1):45–51

    Article  CAS  Google Scholar 

  • Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:777–778

    Article  CAS  Google Scholar 

  • Costa CR, Olivi P (2009) Effect of chloride concentration on the electrochemical treatment of a synthetic tannery wastewater. Electrochim Acta 54(7):2046–2052

    Article  CAS  Google Scholar 

  • CPCB (2008) Tanneries: effluent standards. Central Pollution Control Board, Ministry of Environment and Forest, Government of India, New Delhi

    Google Scholar 

  • Dargo H, Ayalew A (2014) Tannery waste water treatment: a review. Int J Emerg Tren Sci Technol 01:1488–1494

    Google Scholar 

  • Das N, Vimala R, Kartika P (2008) Biosorption of heavy metals-an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Devi BD, Thatheyus AJ, Ramya D (2012) Bioremeoval of hexavalent chromium, using Pseudomonas fluorescens. J Microbiol Biotechnol Res 2:727–735

    Google Scholar 

  • Dias MA, Lacerda ICA, Pimentel PF et al (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol 34(1):46–50

    Article  CAS  Google Scholar 

  • Durai G, Rajasimman M (2011) Biological treatment of tannery waste water, a review. J Environ Sci Technol 4(1):1–17

    Article  CAS  Google Scholar 

  • Dwivedi S, Mishra A, Saini D (2012) Removal of heavy metals in liquid media through fungi isolated from waste water. Int J Sci Res 1(3):181–185

    Google Scholar 

  • Eckenfelder WW (2002) Industrial water pollution control. McGraw-Hill, Singapore

    Google Scholar 

  • Emamjomeh MM, Sivakumar M (2009) Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J Environ Manag 90(5):1663–1679

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (1999) Integrated risk information system (IRSI) on pentachlorophenol. National Centre for Environmental Assessment, Office of Research and Development, Washington, DC

    Google Scholar 

  • Environmental Protection Agency (2000) List of drinking water contaminants and MCL’s. http://www.epa.gov.ogwdw/mcl/html. EPA 816-6-02-013

  • Espinoza-Quinones FR, Fornari MMT, Módenes AN et al (2009) Pollutant removal from tannery effluent by electrocoagulation. Chem Eng J 151:59–65

    Article  CAS  Google Scholar 

  • Faisal M, Hasnain S (2004) Microbial conversion of Cr (VI) in to Cr (III) in industrial Effluent. Afr J Biotechnol 3:610–617

    CAS  Google Scholar 

  • Farabegoli G, Carucci A, Majone M et al (2004) Biological treatment of tannery waste water in the presence of chromium. J Environ Manag 71:345–349

    Article  CAS  Google Scholar 

  • Filali BK, Taoufik J, Zeronal Y et al (2000) Waste water bacterial isolates resistant to heavy metals and antibiotics. Curr Microbiol 41:151–156

    Article  CAS  Google Scholar 

  • Fukuda T, Tsutsumi K, Ishino Y et al (2008) Removal of hexavalent chromium in vitro and from contaminated soils by chromate-resistant fungi from chromium deposits. J Environ Biotechnol 8:111–118

    Google Scholar 

  • Gao S, Yang J, Tian J et al (2010) Electrocoagulation-flotation process for algae removal. J Hazard Mater 177:336–343

    Article  CAS  Google Scholar 

  • Garcia MA, Alonso J, Melgar MJ (2005) Agaricus macrosporus as a potential bioremediation agent for substrates contaminated with heavy metals. J Chem Technol Biotechnol 80:325–330

    Article  CAS  Google Scholar 

  • Gautam RK, Mudhoo A, Lofrano G (2014) Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng 2(1):239–259

    Article  CAS  Google Scholar 

  • Geethakarthi A (2017) Environmentally sound disposal of tannery sludge. Int J Civil Eng Technol 8:368–381

    Google Scholar 

  • Goswami S, Mazumder D (2014) Scope of biological treatment for composite tannery waste water. Int J Environ Sci 5:607–622

    CAS  Google Scholar 

  • Gupta VK, Carrott PJM, Ribeiro Carrott MML et al (2009) Low-cost adsorbents: growing approach to waste water treatment-a review. Crit Rev Environ Sci Technol 39:783–842

    Article  Google Scholar 

  • Gupta VK, Ali I, Saleh TA et al (2012) Chemical treatment technologies for waste-water recycling—an overview. R Soc Chem Adv 2:6380–6388

    CAS  Google Scholar 

  • Haydar S, Aziz JA (2009) Coagulation–flocculation studies of tannery waste water using cationic polymers as a replacement of metal salts. Water Sci Technol 59:381–390

    Article  CAS  Google Scholar 

  • Holt PK, Barton GW, Mitchell CA (2005) The future for electrocoagulation as a localised water treatment technology. Chemosphere 59:355–367

    Article  CAS  Google Scholar 

  • Infogate (2002) Treatment of tannery waste water. http://www.gtz.de/gate/gateid.afp. http://www.eedsa.gr/Contents.aspx?CatId=105

  • Jawahar AJ, Chinnadurai M, Ponselvan JKS et al (1998) Pollution from tanneries and options for treatment of effluent. Indust J Environ Protect 18:672–672

    CAS  Google Scholar 

  • Jeyasingh J, Philip L (2005) Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. J Hazard Mater 118:113–120

    Article  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe (III), Mn (IV) and toxic metals at 100EC by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056

    Article  CAS  Google Scholar 

  • Kassab G, Halalsheh M, Klapwijk A et al (2010) Sequential anaerobic aerobic treatment for domestic waste water – a review. Bioresour Technol 101:3299–3310

    Article  CAS  Google Scholar 

  • Katsifas EA, Giannoutsou E, Lambraki M et al (2004) Chromium recycling of tannery waste through microbial fermentation. J Ind Microbiol Biotechnol 31:57–62

    Article  CAS  Google Scholar 

  • Khalfaouy RE, Elabed A, Khallouk K et al (2017) Microfiltration process for tannery waste water treatment from a leather industry in Fez-Morocco area. J Mat Environ Sci 8:2276–2281

    Google Scholar 

  • Kılıc MG, Hosten C, Demirci S (2009) A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions. J Hazard Mater 171:247–252

    Article  CAS  Google Scholar 

  • Kongjao S, Damronglerd S, Hunsom M (2008) Simultaneous removal of organic and inorganic pollutants in tannery waste water using electro coagulation technique. Kor J Chem Eng 25:703–709

    Article  CAS  Google Scholar 

  • Krishanamoorthi S, Sivakumar V, Saravanan K et al (2009) Treatment and reuse of tannery waste water by embedded system. Modern Appl Sci 3:129–134

    CAS  Google Scholar 

  • Kumar PR, Chaudhari S, Khilar KC et al (2004) Removal of arsenic from water by electrocoa-gulation. Chemosphere 55:1245–1252

    Article  CAS  Google Scholar 

  • Leena AV, Balasundaram N, Meiaraj C (2016) Assessment of dairy waste treatment based on sludge volume index technique. Int J Civil Eng Technol 7:368–381

    Google Scholar 

  • Leitinga G, Hulshoff Pol LW (1991) UASB-process design for various types of waste waters. Water Sci Technol 24:87–107

    Article  Google Scholar 

  • Lin SH, Chuang TS (1994) Wet air oxidation and activated sludge; treatment of phenolic waste water. J Environ Sci Health A 29:547–564

    Google Scholar 

  • Malakootian M, Mansoorian HJ, Moosazadeh M (2010) Performance evaluation of electrocoagulation process using iron-rod electrodes for removing hardness from drinking water. Desalination 255:67–71

    Article  CAS  Google Scholar 

  • Masood F, Malik A (2011) Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy metal contaminated soil. Bull Environ Contam Toxicol 86:114–119

    Article  CAS  Google Scholar 

  • Maurya A, Verma T (2014) Concomitant bioremediation of chromium (VI) and pentachlorophenol from the tannery effluent by immobilized Brevibacterium casei. IOSR J Eng 4:29–39

    Article  Google Scholar 

  • Min KS, Yu JJ, Kim YJ et al (2004) Removal of ammonium from tannery waste water by electrochemical treatment. J Environ Sci Health 39:1867–1879

    Article  CAS  Google Scholar 

  • Mook WT, Chakrabarti MH, Aroua MK et al (2012) Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture waste water using electrochemical technology: a review. Desalination 285:1–13

    Article  CAS  Google Scholar 

  • Morales-Barrera L, Guillen-Jimenez FM, Ortiz-Moreno A et al (2008) Isolation, identification and characterization of a Hypocrea tawa strain with high Cr (VI) reduction potential. J Biochem Eng 40:284–292

    Article  CAS  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K et al (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:1–14

    Article  Google Scholar 

  • Munz G, Gori R, Mori G et al (2007) Powdered activated carbon and membrane bioreactors (MBRPAC) for tannery waste water treatment: long term effect on biological and filtration process performances. Desalination 207:349–360

    Article  CAS  Google Scholar 

  • Murugesan V, Elangoan R (1994) Biokinetic parameters for activated sludge process treating vegetable tannery waste. Indust J Environ Protect 14:511–515

    Google Scholar 

  • Orser CS, Lange CC (1994) Molecular analysis of pentachlorophenol degradation. Biodegradation 5:277–288

    Article  CAS  Google Scholar 

  • Owlad M, Aroua MK, Daud WAW et al (2009) Removal of hexavalent chromium-contaminated water and waste water: a review. Water Air Soil Pollut 200:59–77

    Article  CAS  Google Scholar 

  • Panda J, Sarkar P (2012) Bioremediation of chromium by novel strains Enterobacter aerogens T2 and Acinetobacter sp. PD 12 S2. Environ Sci Pollut Res 19:1809–1817

    Article  CAS  Google Scholar 

  • Park CH, Gonzalez D, Ackerley D et al (2002) Molecular engineering of soluble bacterial proteins with chromate reductase activity. In: Hinchee RE, Porta A, Pellei M (eds) Remediation and beneficial reuse of contaminated sediments. Batelle Press, Columbus., ISBN-13: 9781574771299, pp 103–112

    Google Scholar 

  • Pedro JJA, Walter AI (2006) Bioremediation and natural attenuation: process fundamentals and mathematical models. Wiley, Hoboken

    Google Scholar 

  • Pedro JJA, Walter AI (2006) Bioremediation and natural attenuation: process fundamentals and mathematical models. John Wiley & Sons, Inc., Hoboken, New Jersey, USA

    Google Scholar 

  • Peng Y, Hou H, Wang S et al (2008) Nitrogen and phosphorus removal in pilot scale anaerobic-anoxic oxidation ditch system. J Environ Sci 20:398–403

    Article  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2010) Chromate reductase activity in Streptomyces sp. MC1. J Gen Appl Microbiol 56:11–18

    Article  CAS  Google Scholar 

  • Prasad MNV, Freitas HMD (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 93(1):285–321

    Google Scholar 

  • Protrade (1995) Treatment of Tannery wastewater. In: Ecology and environment in the leather industry-technical handbook. Hesse, Eschborn

    Google Scholar 

  • Pun R, Raut P, Pant BR (2013) Removal of chromium (VI) from leachate using bacterial biomass. Sci World 11:63–65

    Article  CAS  Google Scholar 

  • Ramteke PW, Awasthi S, Srinath T (2010) Efficiency assessment of common effluent treatment plant (CETP) treating tannery effluent. Environ Monit Assess 169:125–131

    Article  CAS  Google Scholar 

  • Rodrigo MA, Cañizares P, Buitrón C (2010) Electrochemical technologies for the regeneration of urban waste waters. Electrochim Acta 55:8160–8164

    Article  CAS  Google Scholar 

  • Sabumon PC (2016) Perspectives on biological treatment of tannery effluent. Adv Recycl Waste Manag 1:1

    Google Scholar 

  • Sadeddin K, Naser A, Firas A (2011) Removal of turbidity and suspended solids by electro-coagulation to improve feed water quality of reverse osmosis plant. Desalination 268:204–207

    Article  CAS  Google Scholar 

  • Secula MS, Creţescu I, Petrescu S (2011) An experimental study of indigo carmine removal from aqueous solution by electrocoagulation. Desalination 277:227–235

    Article  CAS  Google Scholar 

  • Sekaran G, Chitra K, Mariappan M et al (1996) Removal of sulfide in anaerobically treated tannery waste water by wet air oxidation. J Environ Stud Health A 31:579–598

    Google Scholar 

  • Shah S, Thakur IS (2003) Enzymatic dehalogenation of pentachlorophenol by Pseudomonas fluorescens of the microbial community from tannery effluent. Curr Microbiol 47:65–70

    Article  CAS  Google Scholar 

  • Sharma A, Thakur IS, Dureja P (2009) Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site. Biodegradation 20:643–650

    Article  CAS  Google Scholar 

  • Singh N, Verma T, Gaur R (2013) Detoxification of hexavalent chromium by an indigenous facultative anaerobic Bacillus cereus strain isolated from tannery effluent. Afr J Biotechnol 12:1091–1103

    CAS  Google Scholar 

  • Smith WL, Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol 88:983–991

    Article  CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke PW et al (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  Google Scholar 

  • Srivastava S, Thakur IS (2007) Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18:637–646

    Article  CAS  Google Scholar 

  • Srivastava S, Ahmad AH, Thakur IS (2007) Removal of chromium and pentachlorophenol from tannery effluent. Bioresour Technol 98:1128–1132

    Article  CAS  Google Scholar 

  • Stanlake GJ, Finn RK (1982) Isolation and characterization of a pentachlorophenol degrading bacterium. Appl Environ Microbiol 44:1421–1427

    CAS  Google Scholar 

  • Sundarapandiyan S, Chandrasekar R, Ramanaiah B et al (2010) Electrochemical oxidation and reuse of tannery saline waste water. J Hazard Mater 180:197–203

    Article  CAS  Google Scholar 

  • Tare V, Gupta S, Bose P (2003) Case studies on biological treatment of tannery effluents in India. J Air Waste Manag Assoc 53:976–982

    Article  CAS  Google Scholar 

  • Tekerlekopoulou AG, Tsiamis G, Dermou E et al (2010) The effect of carbon source on microbial community structure and Cr (VI) reduction rate. Biotechnol Bioeng 107:478–487

    Article  CAS  Google Scholar 

  • Thakur IS, Verma PK, Upadhaya KC (2001) Involvement of plasmid in degradation of Pentachlorophenol by Pseudomonas sp. from a Chemostat. Biochem Biophys Res Commun 286:109–113

    Article  CAS  Google Scholar 

  • Ukiwe LN, Ibeneme SI, Duru CE et al (2014) Chemical and electrocoagulation techniques in coagulation-flocculation in water and waste water treatment- a review. IJRRAS 18(3):285–294

    Google Scholar 

  • UNIDO (2011) Introduction to treatment of tannery effluents: what every tanner should know about effluent treatment, 2011. United Nations Industrial Development Organization, Vienna

    Google Scholar 

  • Upreti RK, Shrivastava R, Chaturvedi UC (2004) Gut microflora and toxic metals: chromium as a model. Indian J Med Res 119:49–59

    CAS  Google Scholar 

  • Valeika V, Beleska K, Valeikiene V (2006) Oxidation of sulphides in tannery waste water by use of Manganese (IV) oxide. J Environ Stud 15:623–629

    CAS  Google Scholar 

  • Vankar PS, Bajpai D (2007) Phyto-remediation of chrome-VI of tannery effluent by Trichoderma species, Conference on Desalination and the Environment. Sponsored by the European Desalination Society and Center for Research and Technology Hellas (CERTH), Sani Resort, Halkidiki, Greece, April 22–25

    Google Scholar 

  • Verma T, Baiswar V (2013) Isolation and characterization of extracellular thermoalkaline protease producing Bacillus cereus isolated from treated tannery effluent. Int J Eng Sci 2:23–29

    Google Scholar 

  • Verma T, Maurya A (2013) Isolation of potential bacteria from tannery effluent capable to simultaneously tolerate hexavalent chromium and pentachlorophenol and its possible use in effluent bioremediation. Int J Eng Sci 2:64–69

    Google Scholar 

  • Verma T, Singh N (2013) Isolation and process parameter optimization of Brevibacterium casei for simultaneous bioremediation of hexavalent chromium and pentachlorophenol. J Basic Microbiol 53:277–290

    Article  CAS  Google Scholar 

  • Verma T, Srinath T, Gadpayle R et al (2001) Chromate tolerant bacteria isolated from tannery effluents. Bioresour Technol 78:31–35

    Article  CAS  Google Scholar 

  • Verma T, Ramteke PW, Garg SK (2002) Effect of ecological factors on conjugal transfer of chromium resistant plasmid in Escherichia coli isolated from tannery effluent. Appl Biochem Biotechnol 102–103:5–20

    Article  Google Scholar 

  • Verma T, Ramteke PW, Garg SK (2004) Occurrence of chromium resistant thermotolerant coliforms in tannery effluent. Appl Biochem Biotechnol 42:1112–1116

    CAS  Google Scholar 

  • Verma T, Ramteke PW, Garg SK (2008) Bacteriological and physico-chemical quality assessment of treated tannery waste water with special emphasis on pathogenic E. coli detection through serotyping. Environ Monit Assess 145:243–249

    Article  CAS  Google Scholar 

  • Verma T, Garg SK, Ramteke PW (2009) Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. J Appl Microbiol 107:1425–1432

    Article  CAS  Google Scholar 

  • Verma T, Maurya A, Tiwari S (2016) Purification and characterization of hexavalent chromate reductase activity in cell free extract of Bacillus subtilis strain isolated from treated tannery effluent. Curr Biochem Eng 3(2):104–109

    Article  CAS  Google Scholar 

  • Wu WE, Ge HG, Zhang KF (2003) Waste water biological treatment technology. Chemical Industry Press (CIP) Publishing, Beijing

    Google Scholar 

  • Zodi S, Potier O, Lapicque F (2009) Treatment of the textile waste waters by electrocoagulation: effect of operating parameters on the sludge settling characteristics. Sep Purif Technol 69:29–36

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, T., Tiwari, S., Tripathi, M., Ramteke, P.W. (2019). Treatment and Recycling of Wastewater from Tannery. In: Singh, R., Singh, R. (eds) Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-13-1468-1_3

Download citation

Publish with us

Policies and ethics