Skip to main content

Abstract

Paper and pulp industry is water intensive and has a greater impact on aquatic, surrounding environment and public health. Minimum fresh water usage and emphasis on waste-water recycling/management are key factors for the growth of this industry. Concentration of impurities and toxic substances in processed water mainly limits recycling benefits because it adversely affects processes, equipments and paper quality. Organic wastes are mostly processed through biodegradation and bioremediation using anaerobic digestion (methane production) followed by aerobic digestion (inducing sludge processing). Although, biological processing is economical and eco-friendly but treatment of wastes including non-biodegradable recalcitrant compounds mostly limits its broad application. Therefore, many other innovative approaches have been exploited to tackle this problem. Advanced oxidation process (AOP), novel biodegradable polymeric flocculants, electrocoagulation and photocatalysis etc. are used as alternative ways to facilitate detoxification and recycling. In this chapter, we emphasised and provided an in-depth knowledge about the various wastewater treatment strategies linked to paper and pulp industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad H, Ahmad FF, Chia YL et al (2011) Lignocellulolytic enzymes produced by tropical white rot fungi during biopulping of Acacia mangium wood chips. J Biochem Technol 3:245–250

    Google Scholar 

  • Ahmad J, Abdullah SRS, Hassan HB, Rahman RAA, Idris M (2017) Screening of tropical native aquatic plants for polishing pulp and paper mill final effluent. Malays J Anal Sci 21:105–112

    Article  CAS  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, San Diego ISBN: 978012049861, p 453

    Google Scholar 

  • Anuranjana Jaya JG, Vijayan N (2016) Microbial degradation and nutrient optimization of pulp and paper industry waste water. Int Res J Eng Technol 3:1919–1923

    Google Scholar 

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157

    Article  CAS  Google Scholar 

  • Barapatre A, Jha H (2016) Decolourization and biological treatment of pulp and paper mill effluent by lignin-degrading fungus Aspergillus flavus strain F10. Int J Curr Microbiol App Sci 5:19–32

    Article  CAS  Google Scholar 

  • Bennett JW, Lasure LL (1991) More gene manipulations in fungi. Academic, San Diego

    Google Scholar 

  • Bhardwaj NK, Bajpai P, Bajpai PK (1996) Use of enzymes in modification of fibres for improved beat ability. J Biotechnol 51:21–26

    Article  CAS  Google Scholar 

  • Bhattacharjee S, Bhattacharjee C, Datta S (2006) Studies on the fractionation of β-lactoglobulin from casein whey using ultrafiltration and ion-exchange membrane chromatography. J Membr Science 275:141–150

    Article  CAS  Google Scholar 

  • Brown JF, Wanger RE, Feng H et al (1987) Environmental dechlorination of PCBs. Environ Toxicol Chem 6:579–593

    Article  CAS  Google Scholar 

  • Buswell JA, Odier E (1987) Lignin biodegradation. CRC Crit Rev Biotechnol 6:1–60

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN (2013) Bacterial degradation of synthetic and kraft lignin by axenic and mixed culture and their metabolic products. J Environ Biol 34:991–999

    CAS  Google Scholar 

  • Chandra R, Raj A, Purohit HJ et al (2007) Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere 67:839–846

    Article  CAS  Google Scholar 

  • Chrost RJ, Siuda W (2002) Ecology of microbial enzymes in lake ecosystems. In: Burns RG, Dick RF (eds) Enzymes in the environment: activity, ecology and applications. CRC Press, New York, pp 35–72

    Google Scholar 

  • Covinich LG, Bengoechea DI, Fenoglio RJ et al (2014) Advanced oxidation processes for wastewater treatment in the pulp and paper industry: a review. Am J Environ Eng 4:56–70

    Article  Google Scholar 

  • D’Annibale A, Ricci M, Quaratino D et al (2004) Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater. Res Microbiol 155:596–603

    Article  CAS  Google Scholar 

  • Dilek FB, Gokcay CF (1994) Treatment of effluents from hemp-based pulp and paper industry: I e waste characterization and physico-chemical treatability, Proceedings of the IAWQ International Specialized Conference on Pretreatment of Industrial Wastewaters. Pergamon Press, Athens, pp 161–163

    Google Scholar 

  • D'Souza DT, Tiwari R, Sah AK et al (2006) Enhanced production of laccase by a marine fungus during treatment of coloured effluents and synthetic dyes. Enzyme Microb Technol 38:504–511

    Article  CAS  Google Scholar 

  • Ekendahl S (2015) Algae culturing at pulp- and paper industries for sustainable production of bio-oil. Project Rep 66:1–55

    Google Scholar 

  • Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood components. Springer, Berlin

    Book  Google Scholar 

  • Fabienne M (2001) Pectin methyl esterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419

    Article  Google Scholar 

  • Farmer AM (1990) The effect of lake acidification on aquatic macrophytes-a review. Environ Pollut 65:219–240

    Article  CAS  Google Scholar 

  • Ferdowshi Z (2013) Screening of fresh water microalgae and Swedish pulp and paper mill waste waters with the focus on high algal biomass production. Master of Science Thesis

    Google Scholar 

  • Fukunaga N, Kita Y (1990) Elimination of ink from reclaimed paper. Jpn Pat 683:2–80

    Google Scholar 

  • Gantar M, Obreht Z, Dalmacija B (1991) Nutrient removal and algae succession during the growth of Spirulina platensis and Scenedesmus quadricauda on swine wastewater. Bioresour Technol 36:167–171

    Article  CAS  Google Scholar 

  • Gauthier F, Neufeld JD, Driscoll BT (2000) Coliform bacteria and nitrogen fixation in pulp and paper mill effluent treatment systems. Appl Environ Microbiol 66:5155–5160

    Article  CAS  Google Scholar 

  • Godden B, Ball AS, Helvenstein P (1992) Towards elucidation of lignin degradation pathway in actinomycetes. J Gen Microbiol 138:2441–2448

    Article  CAS  Google Scholar 

  • Gomes JFS, Queiroz EM, Pessoa FLP (2007) Design procedure for water/wastewater minimization: single contaminant. J Clean Prod 15:474–485

    Article  Google Scholar 

  • Gonzalez MP, Siso MIG, Murado MA et al (1992) Depuration and valuation of mussel-processing wastes: characterization of amylolytic postincubates from different species grown on an effluent. Bioresour Technol 42:133–140

    Article  CAS  Google Scholar 

  • Guest RK, Smith DW (2002) A potential new role for fungi in a wastewater MBR biological nitrogen reduction system. J Environ Eng Sci 1:433–437

    Article  CAS  Google Scholar 

  • Gupta SK, Rao PVSS (1980) Treatment of urea by algae, activated sludge and flocculation algal bacterial system – a comparative study. Indian J Environ Health 22:103–112

    CAS  Google Scholar 

  • Gurumoorthy P, Saravanan A (2016) Biofuel production from marine microalgae using paper and pulp industry waste water. Int J Chem Sci 14:3249–3255

    CAS  Google Scholar 

  • Guy Yare JA, Lucrelk M, Sakaguchi H (1990) Removal of ink from recycled paper. Jap Pat 150:984–990

    Google Scholar 

  • Hogenkamp H (1999) Flotation: the solution in handling effluent discharge. Pap Asia 15:16–18

    Google Scholar 

  • Hong Y, Dashtban M, Chen S et al (2015) Lignin in paper mill sludge is degraded by white-rot fungi in submerged fermentation. J Microb Biochem Technol 7:177–181

    CAS  Google Scholar 

  • Hooda R, Bhardwaj NK, Singh P (2015) Screening and identification of ligninolytic bacteria for the treatment of pulp and paper mill effluent. Water Air Soil Pollut 226:1–11

    Article  CAS  Google Scholar 

  • Hossain K, Rao AR (2014) Environmental change and it’s affect. Eur J Sustain Dev 3:89–96

    Article  Google Scholar 

  • Jaouani A, Guillen F, Penninckx MJ et al (2005) Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater. Enzym Microb Technol 36:478–486

    Article  CAS  Google Scholar 

  • Jerusik RJ (2010) Fungi and paper manufacture. Fungal Biol Rev 24:68–72

    Article  Google Scholar 

  • Jim F, Reyes S (2006) Anaerobic granular sludge bed reactor technology. University of Arizona, Tucson, Archived from the original on 2006

    Google Scholar 

  • Kamali M, Khodaparast Z (2015) Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol Environ Saf 114:326–342

    Article  CAS  Google Scholar 

  • Karrasch B, Parra O, Cid H et al (2006) Effects of pulp and paper mill effluents on the microplankton and microbial self-purification capabilities of the Bibyo River. Chile Sci Total Environ 359:194–208

    Article  CAS  Google Scholar 

  • Kibblewhite RP, Wong KKY (1999) Modification of a commercial radiata pine kraft pulp using carbohydrate degrading enzymes. Appita J 52:300–311

    CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  • Kishimoto N, Nakagawa T, Okada H et al (2010) Treatment of paper and pulp mill wastewater by ozonation combined with electrolysis. J Water Environ Technol 8:99–109

    Article  Google Scholar 

  • Kreetachat T, Chaisan O, Vaithanomsat P (2016) Decolorization of pulp and paper mill effluents using wood rotting Fungus Fibrodontia sp. RCK783S. Int J Environ Sci Dev 7:321–324

    Article  CAS  Google Scholar 

  • Kshirsagar AD (2013) Bioremediation of wastewater by using microalgae: an experimental study. Int J Life Sci Pharma Res 2:340–346

    Google Scholar 

  • Kulikowska D, Gusiatin ZM, BuÅ‚kowska K et al (2015) Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time. J Hazard Mater 300:882–891

    Article  CAS  Google Scholar 

  • Kumar V, Chopra AK (2016) Reduction of pollution load of paper mill effluent by phytoremediation technique using water caltrop (Trapa natans L.). Cogen Environ Sci 2:1–12

    Article  CAS  Google Scholar 

  • Kumar V, Dhall P, Naithani S et al (2014) Biological approach for the treatment of pulp and paper industry effluent in sequence batch reactor. J Bioremed Biodegr 5:1–10

    CAS  Google Scholar 

  • Kumar S, Saha T, Sharma S (2015) Treatment of pulp and paper mill effluents using novel biodegradable polymeric flocculants based on anionic polysaccharides: a new way to treat the waste water. Int Res J Eng Technol 2:1415–1428

    Google Scholar 

  • Kunikane S, Kaneko M, Maehara R (1984) Growth and nutrient uptake of green alga, Scenedesmus dimorphus, under a wide range of nitrogen-phosphorus ratio (I): experimental study. Water Res 18:1299–1311

    Article  CAS  Google Scholar 

  • Laitinen N, Kulovaara M, Levänen E et al (2002) Ultrafiltration of stone cutting mine waste water with ceramic membranes-a case study. Desalination 149:121–125

    Article  CAS  Google Scholar 

  • Lakshmi KS, Sailaja VH, Reddy MA (2017) Phytoremediation - a promising technique in waste water treatment. Int J Sci Res Manage 5:5480–5489

    Google Scholar 

  • Lehtinen K (2004) Relationship of the technical development of pulping and bleaching to effluent quality and aquatic toxicity. Destech Publications, Lancaster

    Google Scholar 

  • Lettinga G, Huishoff Pol LW (1991) UASB process design for various types of waste water. Water Sci Technol 24:87–107

    Article  CAS  Google Scholar 

  • Luisa M, Goncalves FC, Steiner W (1996) Purification and characterisation of laccase from a newly isolated wood-decaying fungus: enzymes for pulp and paper processing. Am Chem Soc 20:258–263

    Google Scholar 

  • Machmud MN, Fadi F, Fuadi Z et al (2014) Alternative fiber sources from Gracilaria Sp and Eucheuma Cottonii for papermaking. Int J Sci Eng 6:1–10

    Google Scholar 

  • Marquina D (2005) Biomass production of cellulolytic fungi for degradation of waste lignocellulosics. Univ Complutense Madrid 1:41–47

    Google Scholar 

  • Mehta J, Sharma P, Yadav A (2014) Screening and identification of bacterial strains for removal of COD from pulp and paper mill effluent. Adv Life Sci Health 1:34–42

    Google Scholar 

  • Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 9:414–419

    Article  Google Scholar 

  • Mulligan CN (2002) Environmental biotreatment: technologies for air, water, soil, and waste. ABS Consulting/Government Institutes, Rockville, p 395 ISBN-13: 978-0865878907

    Google Scholar 

  • Munkittrick KR, Servos MR, Carey JH et al (1997) Environmental impacts of pulp and paper wastewater: evidence for a reduction in environmental effects at North American pulp mills since 1992. Water Sci Technol 35:329–338

    Article  CAS  Google Scholar 

  • Nagarathnamma R, Bajpai P, Bajpai PK (1999) Studies on decolourization, degradation and detoxification of chlorinated lignin compounds in kraft beaching effluents by Ceriporiopsis subyermispora. Process Biochem 34:939–948

    Article  CAS  Google Scholar 

  • Nemade PD, Kumar S, Louis D et al (2003) Application of anaerobic technology for biomethanation of paper and pulp mill effluent – an insight. Environ Pollut Control 6:6–15

    Google Scholar 

  • Nilsson T Asserson A (1969) Treating wood chips with fungi to enhance enzymatic hydrolysis. US Patent 3:486

    Google Scholar 

  • Nomura Y, Shoji S (1988) Digestion of pulp (Honshu Paper Mfg. Co. Ltd.) Jpn Pat 59:494–498

    Google Scholar 

  • Ordaz-Diaz LA, Rojas-Contreras JA, Rutiaga-Quinones OM et al (2014) Microorganism degradation efficiency in BOD analysis formulating a specific microbial consortium in a pulp and paper mill effluent. Biol Resour 9:7189–7197

    Google Scholar 

  • Pawar SN, Hussain M (2016) Photo induced catalytic treatment of pulp and paper industry wastewater. Int J Innov Eng Technol 7:494–498

    Google Scholar 

  • Prasongsuk S, Lotrakul P, Imai T, Punnapayak H (2009) Decolourization of pulp millwastewater using thermotolerant white rot fungi. Sci Asia 35:37–41

    Article  CAS  Google Scholar 

  • Queiroz MI, Lopes EJ, Zepka LQ et al (2007) The kinetics of the removal of nitrogen and organic matter from parboiled rice effluent by cyanobacteria in a stirred batch reactor. Bioresour Technol 98:2163–2169

    Article  CAS  Google Scholar 

  • Ragunathan R, Swaminathan K (2004) Biological treatment of a pulp and paper industry effluent by Pleurotus spp. World J Microbiol Biotechnol 20:289–293

    Article  Google Scholar 

  • Raj A, Kumar S, Haq I et al (2014) Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Eco Eng 71:355–362

    Article  Google Scholar 

  • Rao HP, Kumar RR, Raghavan BG et al (2011) Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility. Water Soil Air 37:7–14

    CAS  Google Scholar 

  • Reid ID, Paice MG (1998) Effects of manganese peroxidase on residual lignin of softwood kraft pulp. Appl Environ Microbiol 64:2273–2274

    CAS  Google Scholar 

  • Rose GR, St. John MR (1987) Flocculation in encyclopaedia of polymer science and engineering, vol 7. Wiley, New York, p 211

    Google Scholar 

  • Sandstrom O, Neuman E (2003) Long-term development in a Baltic fish community exposed to bleached pulp mill effluent. Aqua Ecol 37:267–276

    Article  Google Scholar 

  • Santos Ramos WDL, Tatyana P, Chairez I et al (2009) Remediation of lignin and its derivatives from pulp and paper industry wastewater by the combination of chemical precipitation and ozonation. J Haz Mater 169(1–3):428–234. https://doi.org/10.1016/j.jhazmat.2009.03.152

    Article  CAS  Google Scholar 

  • Saraswathi R, Saseetharan MK (2010) Investigation on microorganisms and their degradation efficiency in paper and pulp mill effluent. J Water Resour Prot 2:660–664

    Article  CAS  Google Scholar 

  • Saritha V, Maruthi YA, Mukkanti K (2010) Decolourization of higher concentrations of industry effluent by Fomes lividus. World J Microbiol Biotechnol 19:591–593

    Google Scholar 

  • Satyawali Y, Balakrishnan M (2007) Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. J Environ Manag 86:481–497

    Article  CAS  Google Scholar 

  • Selvam K, Shanmuga Priya M (2013) Biological treatment of pulp and paper industry effluent by white rot fungi Schizophyllum commune and Lenzites eximia. Int J Pharm Biol Arch 3:121–126

    Google Scholar 

  • Selvam K, Swaminathan K, Hoon Song M et al (2002) Biological treatment of a pulp and paper industry effluent by Fomes lividus and Trametes versicolor. World J Microbiol Biotechnol 18:523–526

    Article  CAS  Google Scholar 

  • Senthilkumar S, Perumalsamy M, Prabhu HJ (2014) Decolourization potential of white-rot fungus Phanerochaete chrysosporium on synthetic dye bath effluent containing Amido black 10B. J Saudi Chem Soc 18:845–853

    Article  Google Scholar 

  • Seo JK, Park TS, Kwon IH et al (2013) Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native korean goat. Asian-Australas J Ani Sci 26:50–58

    Article  CAS  Google Scholar 

  • Shanthi J, Krubakaran CTB, Balagurunathan R (2012) Characterization and isolation of paper mill effluent degrading microorganisms. J Chem Pharm Res 4:4436–4439

    Google Scholar 

  • Sharma D (2014) Treatment of pulp and paper effluent by electrocoagulation. Int J Chem Technol Res 6:860–870

    Google Scholar 

  • Sharma N, Gupta VC (2012) Batch biodegradation of phenol of paper and pulp effluent by Aspergillus Niger. Int Chem Eng Appl 3:182–186

    CAS  Google Scholar 

  • Sharma R, Chandra S, Singh A et al (2014) Degradation of pulp and paper mill effluents. IIOAB J 5:6–12

    CAS  Google Scholar 

  • Sharyo M, Sakaguchi H (1990) Deinking used paper with incorporation of lipase. Jap Pat 2:160–168

    Google Scholar 

  • Sigoillot C, Record E, Belle V et al (2004) Natural and recombinant fungal laccases for paper pulp bleaching. Appl Microbiol Biotechnol 64:346–352

    Article  CAS  Google Scholar 

  • Singh P, Thakur S (2004) Removal of color and detoxification of pulp and paper mill effluent by microorganism in two step bioreactor. J Sci Ind Res 63:944–948

    CAS  Google Scholar 

  • Singhal V, Kumar A, Rai JPN (2003) Phytoremediation of pulp and paper mill and distillery effluents by channel grass (Vallisneria spiralis). J Sci Ind Res 62:319–328

    CAS  Google Scholar 

  • Springer AM (2000) Industrial environmental control: pulp and paper industry, 3rd edn. TAPPI Press, Atlanta

    Google Scholar 

  • Suutarinen J, Honkapää K, Heiniö R et al (2002) Modeling of calcium chloride and pectin methylesterase prefreezing treatments of strawberries and jams. J Food Sci 67:1240–1248

    Article  CAS  Google Scholar 

  • Sukumaran, Dipu (2013) Phytoremediation of heavy metals from industrial effluent using constructed wetland technology. Appl Eco Environ Sci 5:92–97

    Google Scholar 

  • Tenno R, Paulapuro H (1999) Removal of dissolved organic compounds from paper machine whitewater by membrane bioreactors: a comparative analysis. Espoo, Finland

    Google Scholar 

  • Thompson RC, Olsen Y, Mitchell RP et al (2004) Lost at sea: where is all the plastic? Science 304:838–838

    Article  CAS  Google Scholar 

  • Tickle A, Malcolm F, Graham D (1995) Acid rain and natural conservation in Europe: a preliminary study of areas at risk from acidification. WWF International, Morges

    Google Scholar 

  • Tiedje JM, Quensen JF, Chee-Sanford et al (1993) Microbial reductive dechlorination of PCBs. Biodegradation 4:231–240

    Article  CAS  Google Scholar 

  • Tyagi S, Kumar V, Singh J et al (2014) Bioremediation of pulp and paper mill effluent by dominant aboriginal microbes and their consortium. Int J Environ Res 8:561–568

    Google Scholar 

  • Usha R, Vasavi A, Thishya K, Rani SJ, Supraja P (2011) Phytoextraction of lead from industrial effluents by sunflower (Helianthus Annuus. L). Rasayan J Chem 4:8–12

    CAS  Google Scholar 

  • Van den Heuvel MR, Ellis RJ (2002) Timing of exposure to a pulp and paper effluent influences the manifestation of reproductive effects in rainbow trout. Environ Toxicol Chem 21:2338–2347

    Article  Google Scholar 

  • Verma VK, Gupta RK, Rai JPN (2005) Biosorption of Pb and Zn from pulp and paper industry effluents by water hyacinth (Eichhornia crassipes). J Sci Ind Res 64:778–781

    CAS  Google Scholar 

  • Wong SS, Teng TT, Ahmad AL et al (2006) Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. J Hazard Mater 135:378–388

    Article  CAS  Google Scholar 

  • Wu J, Xiao Y, Yu H (2005) Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresour Technol 96:1357–1363

    Article  CAS  Google Scholar 

  • Xiang Z, Gao W, Chen L et al (2016) A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp. Cellulose 23:493–503

    Article  CAS  Google Scholar 

  • Yamuna M, Selvam K, Meenakshi R (2016) Treatment of a pulp and paper industry effluent by Daldenia concentrica, Lepiota sp. and Trametes serialis -a biological approach. Int J Sci Eng Res 7:1112–1119

    Google Scholar 

  • Yerkes WD (1968) Process for the digestion of cellulosic materials by enzymatic action of Trametes suaveolens. United States Patent 3:406–489

    Google Scholar 

  • Zabel RA, Morrell JJ (1992) Wood microbiology: decay and its prevention. Academic, San Diego

    Google Scholar 

  • Zheng S, Yang M, Yang Z (2005) Biomass production of yeast isolated from salad oil manufacturing wastewater. Bioresour Technol 96:1183–1187

    Article  CAS  Google Scholar 

  • Zhu N (2006) Composting of high moisture content swine manure with corncob in a pilot-scale aerated static bin system. Bioresour Technol 97:1870–1875

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Gupta, R. (2019). Treatment and Recycling of Wastewater from Pulp and Paper Mill. In: Singh, R., Singh, R. (eds) Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-13-1468-1_2

Download citation

Publish with us

Policies and ethics