Diabetes in Liver Disease

  • Takumi KawaguchiEmail author
  • Dan Nakano
  • Takuji Torimura


A high prevalence of diabetes mellitus has been reported in patients with chronic liver disease (CLD). Increasing evidence suggests that diabetes mellitus and its treatment have a significant impact on the clinical course of CLD. This review summarized the prevalence, diagnosis, and mechanisms of diabetes mellitus in patients with CLD. We also reviewed the clinical impact and therapeutic strategy for diabetes mellitus in patients with CLD. Recent progress using antidiabetic medication in non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and hepatocellular carcinoma was also discussed.


Insulin resistance Hepatitis C virus Non-alcoholic fatty liver disease Steatohepatitis Hepatoma Dipeptidyl peptidase-4inhibitor Sodium glucose cotransporter 2 inhibitor 



AMP-activated kinase


continuous glucose monitoring system


confidence interval


chronic liver disease


dipeptidyl peptidase IV


glycated hemoglobin


hepatitis B virus


hepatocellular carcinoma


hepatitis C virus


hazard ratio


insulin-like growth factor-1


impaired glucose tolerance


lysyl oxidase like 2


mitogen-activated protein kinase


non-alcoholic fatty liver disease


odds ratio


patatin-like phospholipase domain-containing 3


quality of life


sodium glucose cotransporter 2


very-low-density lipoprotein


Conflict of Interest Statement

All authors disclose no conflicts.

Financial Support

This work was supported by JSPS Grant-in-Aid for Scientific Research (C) JP17K09444.


  1. 1.
    Megyesi C, Samols E, Marks V. Glucose tolerance and diabetes in chronic liver disease. Lancet. 1967;2:1051–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Braganca AC, Alvares-da-Silva MR. Prevalence of diabetes mellitus and impaired glucose tolerance in patients with decompensated cirrhosis being evaluated for liver transplantation: the utility of oral glucose tolerance test. Arq Gastroenterol. 2010;47:22–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Jeon HK, Kim MY, Baik SK, Park HJ, Choi H, Park SY, et al. Hepatogenous diabetes in cirrhosis is related to portal pressure and variceal hemorrhage. Dig Dis Sci. 2013;58:3335–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Garcia-Compean D, Jaquez-Quintana JO, Lavalle-Gonzalez FJ, Gonzalez-Gonzalez JA, Munoz-Espinosa LE, Villarreal-Perez JZ, et al. Subclinical abnormal glucose tolerance is a predictor of death in liver cirrhosis. World J Gastroenterol. 2014;20:7011–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Nishida T. Diagnosis and clinical implications of diabetes in liver cirrhosis: a focus on the oral glucose tolerance test. J Endocr Soc. 2017;1:886–96.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Alavian SM, Hajarizadeh B, Nematizadeh F, Larijani B. Prevalence and determinants of diabetes mellitus among Iranian patients with chronic liver disease. BMC Endocr Disord. 2004;4:4.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Fabiani S, Fallahi P, Ferrari SM, Miccoli M, Antonelli A. Hepatitis C virus infection and development of type 2 diabetes mellitus: systematic review and meta-analysis of the literature. Rev Endocr Metab Disord. 2018;19(4):405–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Thuluvath PJ, John PR. Association between hepatitis C, diabetes mellitus, and race. A case-control study. Am J Gastroenterol. 2003;98:438–41.PubMedGoogle Scholar
  9. 9.
    Rouabhia S, Malek R, Bounecer H, Dekaken A, Bendali Amor F, Sadelaoud M, et al. Prevalence of type 2 diabetes in Algerian patients with hepatitis C virus infection. World J Gastroenterol. 2010;16:3427–31.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mangia A, Schiavone G, Lezzi G, Marmo R, Bruno F, Villani MR, et al. HCV and diabetes mellitus: evidence for a negative association. Am J Gastroenterol. 1998;93:2363–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Labropoulou-Karatza C, Goritsas C, Fragopanagou H, Repandi M, Matsouka P, Alexandrides T. High prevalence of diabetes mellitus among adult beta-thalassaemic patients with chronic hepatitis C. Eur J Gastroenterol Hepatol. 1999;11:1033–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Knobler H, Schihmanter R, Zifroni A, Fenakel G, Schattner A. Increased risk of type 2 diabetes in noncirrhotic patients with chronic hepatitis C virus infection. Mayo Clin Proc. 2000;75:355–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Caronia S, Taylor K, Pagliaro L, Carr C, Palazzo U, Petrik J, et al. Further evidence for an association between non-insulin-dependent diabetes mellitus and chronic hepatitis C virus infection. Hepatology. 1999;30:1059–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Ortiz-Lopez C, Lomonaco R, Orsak B, Finch J, Chang Z, Kochunov VG, et al. Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care. 2012;35:873–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Imamura Y, Uto H, Hiramine Y, Hosoyamada K, Ijuin S, Yoshifuku S, et al. Increasing prevalence of diabetes mellitus in association with fatty liver in a Japanese population. J Gastroenterol. 2014;49:1406–13.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakahara T, Hyogo H, Yoneda M, Sumida Y, Eguchi Y, Fujii H, et al. Type 2 diabetes mellitus is associated with the fibrosis severity in patients with nonalcoholic fatty liver disease in a large retrospective cohort of Japanese patients. J Gastroenterol. 2014;49:1477–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Newton KP, Hou J, Crimmins NA, Lavine JE, Barlow SE, Xanthakos SA, et al. Prevalence of prediabetes and type 2 diabetes in children with nonalcoholic fatty liver disease. JAMA Pediatr. 2016;170:e161971.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cho JM, Oh SH, Kim KM, Namgung JM, Kim DY, Song GW, et al. Prevalence and treatment of new-onset diabetes mellitus after liver transplantation in Korean children: a single-center study. Transplant Proc. 2014;46:873–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Parolin MB, Zaina FE, Araujo MV, Kupka E, Coelho JC. Prevalence of new-onset diabetes mellitus in Brazilian liver transplant recipients: association with HCV infection. Transplant Proc. 2004;36:2776–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Saab S, Shpaner A, Zhao Y, Brito I, Durazo F, Han S, et al. Prevalence and risk factors for diabetes mellitus in moderate term survivors of liver transplantation. Am J Transplant. 2006;6:1890–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Honda M, Asonuma K, Hayashida S, Suda H, Ohya Y, Lee KJ, et al. Incidence and risk factors for new-onset diabetes in living-donor liver transplant recipients. Clin Transpl. 2013;27:426–35.CrossRefGoogle Scholar
  22. 22.
    Anastacio LR, Ribeiro Hde S, Ferreira LG, Lima AS, Vilela EG, Toulson Davisson Correia MI. Incidence and risk factors for diabetes, hypertension and obesity after liver transplantation. Nutr Hosp. 2013;28:643–8.PubMedGoogle Scholar
  23. 23.
    Hara Y, Kawagishi N, Nakanishi W, Tokodai K, Nakanishi C, Miyagi S, et al. Prevalence and risk factors of obesity, hypertension, dyslipidemia and diabetes mellitus before and after adult living donor liver transplantation. Hepatol Res. 2015;45:764–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Navasa M, Bustamante J, Marroni C, Gonzalez E, Andreu H, Esmatjes E, et al. Diabetes mellitus after liver transplantation: prevalence and predictive factors. J Hepatol. 1996;25:64–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Chamberlain JJ, Herman WH, Leal S, Rhinehart AS, Shubrook JH, Skolnik N, et al. Pharmacologic therapy for type 2 diabetes: synopsis of the 2017 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med. 2017;166:572–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Trenti T, Cristani A, Cioni G, Pentore R, Mussini C, Ventura E. Fructosamine and glycated hemoglobin as indices of glycemic control in patients with liver cirrhosis. Ric Clin Lab. 1990;20:261–7.PubMedGoogle Scholar
  27. 27.
    Araki E, Haneda M, Kasuga M, Nishikawa T, Kondo T, Ueki K, et al. New glycemic targets for patients with diabetes from the Japan Diabetes Society. J Diabetes Investig. 2017;8:123–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Nomura Y, Nanjo K, Miyano M, Kikuoka H, Kuriyama S, Maeda M, et al. Hemoglobin A1 in cirrhosis of the liver. Diabetes Res. 1989;11:177–80.PubMedGoogle Scholar
  29. 29.
    Cacciatore L, Cozzolino G, Giardina MG, De Marco F, Sacca L, Esposito P, et al. Abnormalities of glucose metabolism induced by liver cirrhosis and glycosylated hemoglobin levels in chronic liver disease. Diabetes Res. 1988;7:185–8.PubMedGoogle Scholar
  30. 30.
    Nadelson J, Satapathy SK, Nair S. Glycated hemoglobin levels in patients with decompensated cirrhosis. Int J Endocrinol. 2016;2016:8390210.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Currie CJ, Poole CD, Papo NL. An overview and commentary on retrospective, continuous glucose monitoring for the optimisation of care for people with diabetes. Curr Med Res Opin. 2009;25:2389–400.PubMedCrossRefGoogle Scholar
  32. 32.
    Kawaguchi T, Itou M, Taniguchi E, Sakata M, Abe M, Koga H, et al. Serum level of free fatty acids is associated with nocturnal hypoglycemia in cirrhotic patients with HCV infection: a pilot study. Hepatogastroenterology. 2011;58:103–8.PubMedGoogle Scholar
  33. 33.
    Isoda H, Takahashi H, Eguchi Y, Kojima M, Inoue K, Murayama K, et al. Re-evaluation of glycated hemoglobin and glycated albumin with continuous glucose monitoring system as markers of glycemia in patients with liver cirrhosis. Biomed Rep. 2017;6:51–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Ochi T, Kawaguchi T, Nakahara T, Ono M, Noguchi S, Koshiyama Y, et al. Differences in characteristics of glucose intolerance between patients with NAFLD and chronic hepatitis C as determined by CGMS. Sci Rep. 2017;7:10146.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kawaguchi T, Yoshida T, Harada M, Hisamoto T, Nagao Y, Ide T, et al. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol. 2004;165:1499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kawaguchi T, Nagao Y, Tanaka K, Ide T, Harada M, Kumashiro R, et al. Causal relationship between hepatitis C virus core and the development of type 2 diabetes mellitus in a hepatitis C virus hyperendemic area: a pilot study. Int J Mol Med. 2005;16:109–14.PubMedGoogle Scholar
  37. 37.
    Kawaguchi T, Sata M. Importance of hepatitis C virus-associated insulin resistance: therapeutic strategies for insulin sensitization. World J Gastroenterol. 2010;16:1943–52.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kawaguchi T, Taniguchi E, Itou M, Sumie S, Yamagishi S, Sata M. The pathogenesis, complications and therapeutic strategy for hepatitis C virus-associated insulin resistance in the era of anti-viral treatment. Rev Recent Clin Trials. 2010;5:147–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Kawaguchi T, Taniguchi E, Itou M, Sakata M, Sumie S, Sata M. Insulin resistance and chronic liver disease. World J Hepatol. 2011;3:99–107.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kawaguchi T, Sata M. Glucose metabolism disorder: a risk factor for hepatocellular carcinoma. Nihon Shokakibyo Gakkai Zasshi. 2012;109:544–54.PubMedGoogle Scholar
  41. 41.
    Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Tsukamoto K, Kimura S, et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology. 2004;126:840–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Pazienza V, Clement S, Pugnale P, Conzelman S, Foti M, Mangia A, et al. The hepatitis C virus core protein of genotypes 3a and 1b downregulates insulin receptor substrate 1 through genotype-specific mechanisms. Hepatology. 2007;45:1164–71.PubMedCrossRefGoogle Scholar
  43. 43.
    Pascarella S, Clement S, Guilloux K, Conzelmann S, Penin F, Negro F. Effects of hepatitis C virus on suppressor of cytokine signaling mRNA levels: comparison between different genotypes and core protein sequence analysis. J Med Virol. 2011;83:1005–15.PubMedCrossRefGoogle Scholar
  44. 44.
    Ahmed QL, Manzoor S, Tariq M, Khalid M, Ashraf W, Parvaiz F, et al. Hepatitis C virus infection in vitro triggers endoplasmic reticulum stress and downregulates insulin receptor substrates 1 and 2 through upregulation of cytokine signaling suppressor 3. Acta Virol. 2014;58:238–44.PubMedCrossRefGoogle Scholar
  45. 45.
    Bose SK, Shrivastava S, Meyer K, Ray RB, Ray R. Hepatitis C virus activates the mTOR/S6K1 signaling pathway in inhibiting IRS-1 function for insulin resistance. J Virol. 2012;86:6315–22.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bernsmeier C, Duong FH, Christen V, Pugnale P, Negro F, Terracciano L, et al. Virus-induced over-expression of protein phosphatase 2A inhibits insulin signalling in chronic hepatitis C. J Hepatol. 2008;49:429–40.PubMedCrossRefGoogle Scholar
  47. 47.
    del Campo JA, Garcia-Valdecasas M, Rojas L, Rojas A, Romero-Gomez M. The hepatitis C virus modulates insulin signaling pathway in vitro promoting insulin resistance. PLoS One. 2012;7:e47904.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gastaldi G, Goossens N, Clement S, Negro F. Current level of evidence on causal association between hepatitis C virus and type 2 diabetes: a review. J Adv Res. 2017;8:149–59.PubMedCrossRefGoogle Scholar
  49. 49.
    Kasai D, Adachi T, Deng L, Nagano-Fujii M, Sada K, Ikeda M, et al. HCV replication suppresses cellular glucose uptake through down-regulation of cell surface expression of glucose transporters. J Hepatol. 2009;50:883–94.PubMedCrossRefGoogle Scholar
  50. 50.
    Lerat H, Imache MR, Polyte J, Gaudin A, Mercey M, Donati F, et al. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice. J Biol Chem. 2017;292:12860–73.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Itou M, Kawaguchi T, Taniguchi E, Sumie S, Oriishi T, Mitsuyama K, et al. Altered expression of glucagon-like peptide-1 and dipeptidyl peptidase IV in patients with HCV-related glucose intolerance. J Gastroenterol Hepatol. 2008;23:244–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Yamaguchi A, Tazuma S, Nishioka T, Ohishi W, Hyogo H, Nomura S, et al. Hepatitis C virus core protein modulates fatty acid metabolism and thereby causes lipid accumulation in the liver. Dig Dis Sci. 2005;50:1361–71.PubMedCrossRefGoogle Scholar
  53. 53.
    Singaravelu R, Chen R, Lyn RK, Jones DM, O’Hara S, Rouleau Y, et al. Hepatitis C virus induced up-regulation of microRNA-27: a novel mechanism for hepatic steatosis. Hepatology. 2014;59:98–108.PubMedCrossRefGoogle Scholar
  54. 54.
    Garcia-Mediavilla MV, Pisonero-Vaquero S, Lima-Cabello E, Benedicto I, Majano PL, Jorquera F, et al. Liver X receptor alpha-mediated regulation of lipogenesis by core and NS5A proteins contributes to HCV-induced liver steatosis and HCV replication. Lab Invest. 2012;92:1191–202.PubMedCrossRefGoogle Scholar
  55. 55.
    Sun HY, Lin CC, Lee JC, Wang SW, Cheng PN, Wu IC, et al. Very low-density lipoprotein/lipo-viro particles reverse lipoprotein lipase-mediated inhibition of hepatitis C virus infection via apolipoprotein C-III. Gut. 2013;62:1193–203.PubMedCrossRefGoogle Scholar
  56. 56.
    Kawaguchi T, Ide T, Taniguchi E, Hirano E, Itou M, Sumie S, et al. Clearance of HCV improves insulin resistance, beta-cell function, and hepatic expression of insulin receptor substrate 1 and 2. Am J Gastroenterol. 2007;102:570–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Adinolfi LE, Nevola R, Guerrera B, D’Alterio G, Marrone A, Giordano M, et al. HCV clearance by direct-acting antiviral treatments reverses insulin resistance in chronic hepatitis C patients. J Gastroenterol Hepatol. 2018;33(7):1379–82.PubMedCrossRefGoogle Scholar
  58. 58.
    Ciancio A, Bosio R, Bo S, Pellegrini M, Sacco M, Vogliotti E, et al. Significant improvement of glycemic control in diabetic patients with HCV infection responding to direct-acting antiviral agents. J Med Virol. 2018;90:320–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52:1836–46.PubMedCrossRefGoogle Scholar
  60. 60.
    Brandt A, Jin CJ, Nolte K, Sellmann C, Engstler AJ, Bergheim I. Short-term intake of a fructose-, fat- and cholesterol-rich diet causes hepatic steatosis in mice: effect of antibiotic treatment. Nutrients. 2017;9:E1013.PubMedCrossRefGoogle Scholar
  61. 61.
    Imajo K, Fujita K, Yoneda M, Nozaki Y, Ogawa Y, Shinohara Y, et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 2012;16:44–54.PubMedCrossRefGoogle Scholar
  62. 62.
    Mencin A, Kluwe J, Schwabe RF. Toll-like receptors as targets in chronic liver diseases. Gut. 2009;58:704–20.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Polyzos SA, Kountouras J, Mantzoros CS. Adipokines in nonalcoholic fatty liver disease. Metabolism. 2016;65:1062–79.PubMedCrossRefGoogle Scholar
  64. 64.
    Polyzos SA, Kountouras J, Polymerou V, Papadimitriou KG, Zavos C, Katsinelos P. Vaspin, resistin, retinol-binding protein-4, interleukin-1alpha and interleukin-6 in patients with nonalcoholic fatty liver disease. Ann Hepatol. 2016;15:705–14.PubMedGoogle Scholar
  65. 65.
    Zwolak A, Szuster-Ciesielska A, Daniluk J, Semeniuk J, Kandefer-Szerszen M. Chemerin, retinol binding protein-4, cytokeratin-18 and transgelin-2 presence in sera of patients with non-alcoholic liver fatty disease. Ann Hepatol. 2016;15:862–9.PubMedGoogle Scholar
  66. 66.
    Aktas B, Yilmaz Y, Eren F, Yonal O, Kurt R, Alahdab YO, et al. Serum levels of vaspin, obestatin, and apelin-36 in patients with nonalcoholic fatty liver disease. Metabolism. 2011;60:544–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Misu H, Takamura T, Takayama H, Hayashi H, Matsuzawa-Nagata N, Kurita S, et al. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab. 2010;12:483–95.PubMedCrossRefGoogle Scholar
  68. 68.
    von Loeffelholz C, Horn P, Birkenfeld AL, Claus RA, Metzing BU, Docke S, et al. Fetuin A is a predictor of liver fat in preoperative patients with nonalcoholic fatty liver disease. J Invest Surg. 2016;29:266–74.CrossRefGoogle Scholar
  69. 69.
    Meex RCR, Watt MJ. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol. 2017;13:509–20.PubMedCrossRefGoogle Scholar
  70. 70.
    Ebert T, Linder N, Schaudinn A, Busse H, Berger J, Lichtinghagen R, et al. Association of fetuin B with markers of liver fibrosis in nonalcoholic fatty liver disease. Endocrine. 2017;58:246–52.PubMedCrossRefGoogle Scholar
  71. 71.
    Bhanji RA, Narayanan P, Allen AM, Malhi H, Watt KD. Sarcopenia in hiding: the risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology. 2017;66:2055–65.PubMedCrossRefGoogle Scholar
  72. 72.
    Polyzos SA, Kountouras J, Anastasilakis AD, Geladari EV, Mantzoros CS. Irisin in patients with nonalcoholic fatty liver disease. Metabolism. 2014;63:207–17.PubMedCrossRefGoogle Scholar
  73. 73.
    Kawaguchi T, Sumida Y, Umemura A, Matsuo K, Takahashi M, Takamura T, et al. Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS One. 2012;7:e38322.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–5.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Palmer ND, Musani SK, Yerges-Armstrong LM, Feitosa MF, Bielak LF, Hernaez R, et al. Characterization of European ancestry nonalcoholic fatty liver disease-associated variants in individuals of African and Hispanic descent. Hepatology. 2013;58:966–75.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Hernaez R, McLean J, Lazo M, Brancati FL, Hirschhorn JN, Borecki IB, et al. Association between variants in or near PNPLA3, GCKR, and PPP1R3B with ultrasound-defined steatosis based on data from the third National Health and Nutrition Examination Survey. Clin Gastroenterol Hepatol. 2013;11:1183–1190e1182.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Sookoian S, Pirola CJ. Meta-analysis of the influence of TM6SF2 E167K variant on plasma concentration of aminotransferases across different populations and diverse liver phenotypes. Sci Rep. 2016;6:27718.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011;7:e1001324.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Trepo E, Romeo S, Zucman-Rossi J, Nahon P. PNPLA3 gene in liver diseases. J Hepatol. 2016;65:399–412.PubMedCrossRefGoogle Scholar
  80. 80.
    Pirazzi C, Valenti L, Motta BM, Pingitore P, Hedfalk K, Mancina RM, et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet. 2014;23:4077–85.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    He S, McPhaul C, Li JZ, Garuti R, Kinch L, Grishin NV, et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem. 2010;285:6706–15.PubMedCrossRefGoogle Scholar
  82. 82.
    Huang Y, Cohen JC, Hobbs HH. Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. J Biol Chem. 2011;286:37085–93.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Nordt TK, Schneider DJ, Sobel BE. Augmentation of the synthesis of plasminogen activator inhibitor type-1 by precursors of insulin. A potential risk factor for vascular disease. Circulation. 1994;89:321–30.PubMedCrossRefGoogle Scholar
  84. 84.
    Haffner SM, Howard G, Mayer E, Bergman RN, Savage PJ, Rewers M, et al. Insulin sensitivity and acute insulin response in African-Americans, non-Hispanic whites, and Hispanics with NIDDM: the insulin resistance atherosclerosis study. Diabetes. 1997;46:63–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Eslam M, Kawaguchi T, Del Campo JA, Sata M, Khattab MA, Romero-Gomez M. Use of HOMA-IR in hepatitis C. J Viral Hepat. 2011;18:675–84.PubMedCrossRefGoogle Scholar
  86. 86.
    Farrell G. Insulin resistance, obesity, and liver cancer. Clin Gastroenterol Hepatol. 2014;12:117–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Liu TL, Trogdon J, Weinberger M, Fried B, Barritt AS. Diabetes is associated with clinical decompensation events in patients with cirrhosis. Dig Dis Sci. 2016;61:3335–45.PubMedCrossRefGoogle Scholar
  88. 88.
    Yang JD, Mohamed HA, Cvinar JL, Gores GJ, Roberts LR, Kim WR. Diabetes mellitus heightens the risk of hepatocellular carcinoma except in patients with hepatitis C cirrhosis. Am J Gastroenterol. 2016;111:1573–80.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wild SH, Morling JR, McAllister DA, Kerssens J, Fischbacher C, Parkes J, et al. Type 2 diabetes and risk of hospital admission or death for chronic liver diseases. J Hepatol. 2016;64:1358–64.PubMedCrossRefGoogle Scholar
  90. 90.
    Su YW, Liu PH, Hsu CY, Lee YH, Hsia CY, Ho SY, et al. Prognostic impact of diabetes mellitus on hepatocellular carcinoma: special emphasis from the BCLC perspective. PLoS One. 2017;12:e0174333.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Jepsen P, Watson H, Andersen PK, Vilstrup H. Diabetes as a risk factor for hepatic encephalopathy in cirrhosis patients. J Hepatol. 2015;63:1133–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Fracanzani AL, Valenti L, Bugianesi E, Andreoletti M, Colli A, Vanni E, et al. Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: a role for insulin resistance and diabetes. Hepatology. 2008;48:792–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Patel S, Jinjuvadia R, Patel R, Liangpunsakul S. Insulin resistance is associated with significant liver fibrosis in chronic hepatitis C patients: a systemic review and meta-analysis. J Clin Gastroenterol. 2016;50:80–4.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Yang CH, Chiu YC, Chen CH, Chen CH, Tsai MC, Chuah SK, et al. Diabetes mellitus is associated with gastroesophageal variceal bleeding in cirrhotic patients. Kaohsiung J Med Sci. 2014;30:515–20.PubMedCrossRefGoogle Scholar
  95. 95.
    Li Q, Li X, Deng CL. Induction of proliferation and activation of rat hepatic stellate cells via high glucose and high insulin. Eur Rev Med Pharmacol Sci. 2017;21:5420–9.PubMedGoogle Scholar
  96. 96.
    Ota T, Takamura T, Kurita S, Matsuzawa N, Kita Y, Uno M, et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology. 2007;132:282–93.PubMedCrossRefGoogle Scholar
  97. 97.
    Kaji K, Yoshiji H, Kitade M, Ikenaka Y, Noguchi R, Yoshii J, et al. Impact of insulin resistance on the progression of chronic liver diseases. Int J Mol Med. 2008;22:801–8.PubMedGoogle Scholar
  98. 98.
    Paradis V, Perlemuter G, Bonvoust F, Dargere D, Parfait B, Vidaud M, et al. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology. 2001;34:738–44.PubMedCrossRefGoogle Scholar
  99. 99.
    Cai CX, Buddha H, Castelino-Prabhu S, Zhang Z, Britton RS, Bacon BR, et al. Activation of insulin-PI3K/Akt-p70S6K pathway in hepatic stellate cells contributes to fibrosis in nonalcoholic steatohepatitis. Dig Dis Sci. 2017;62:968–78.PubMedCrossRefGoogle Scholar
  100. 100.
    Leti F, Legendre C, Still CD, Chu X, Petrick A, Gerhard GS, et al. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells. Transl Res. 2017;190:25–39 e21.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yu F, Lu Z, Cai J, Huang K, Chen B, Li G, et al. MALAT1 functions as a competing endogenous RNA to mediate Rac1 expression by sequestering miR-101b in liver fibrosis. Cell Cycle. 2015;14:3885–96.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Dongiovanni P, Meroni M, Baselli GA, Bassani GA, Rametta R, Pietrelli A, et al. Insulin resistance promotes Lysyl Oxidase Like 2 induction and fibrosis accumulation in non-alcoholic fatty liver disease. Clin Sci (Lond). 2017;131:1301–15.CrossRefGoogle Scholar
  103. 103.
    Moon HJ, Finney J, Ronnebaum T, Mure M. Human lysyl oxidase-like 2. Bioorg Chem. 2014;57:231–41.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ampuero J, Ranchal I, del Mar Diaz-Herrero M, del Campo JA, Bautista JD, Romero-Gomez M. Role of diabetes mellitus on hepatic encephalopathy. Metab Brain Dis. 2013;28:277–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Bajaj JS, Betrapally NS, Hylemon PB, Thacker LR, Daita K, Kang DJ, et al. Gut microbiota alterations can predict hospitalizations in cirrhosis independent of diabetes mellitus. Sci Rep. 2015;5:18559.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wlazlo N, van Greevenbroek MM, Curvers J, Schoon EJ, Friederich P, Twisk JW, et al. Diabetes mellitus at the time of diagnosis of cirrhosis is associated with higher incidence of spontaneous bacterial peritonitis, but not with increased mortality. Clin Sci (Lond). 2013;125:341–8.CrossRefGoogle Scholar
  107. 107.
    Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15:95–101.PubMedCrossRefGoogle Scholar
  108. 108.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in older people. Age Ageing. 2010;39:412–23.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Iwasa M, Hara N, Terasaka E, Hattori A, Ishidome M, Mifuji-Moroka R, et al. Evaluation and prognosis of sarcopenia using impedance analysis in patients with liver cirrhosis. Hepatol Res. 2014;44:E316–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Hanai T, Shiraki M, Nishimura K, Ohnishi S, Imai K, Suetsugu A, et al. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition. 2015;31:193–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Fujiwara N, Nakagawa H, Kudo Y, Tateishi R, Taguri M, Watadani T, et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J Hepatol. 2015;63:131–40.PubMedCrossRefGoogle Scholar
  112. 112.
    Imai K, Takai K, Watanabe S, Hanai T, Suetsugu A, Shiraki M, et al. Sarcopenia impairs prognosis of patients with hepatocellular carcinoma: the role of liver functional reserve and tumor-related factors in loss of skeletal muscle volume. Nutrients. 2017;9:E1054.PubMedCrossRefGoogle Scholar
  113. 113.
    Kim G, Kang SH, Kim MY, Baik SK. Prognostic value of sarcopenia in patients with liver cirrhosis: a systematic review and meta-analysis. PLoS One. 2017;12:e0186990.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Nishikawa H, Shiraki M, Hiramatsu A, Moriya K, Hino K, Nishiguchi S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol Res. 2016;46:951–63.PubMedCrossRefGoogle Scholar
  115. 115.
    Fukuda T, Bouchi R, Takeuchi T, Nakano Y, Murakami M, Minami I, et al. Association of diabetic retinopathy with both sarcopenia and muscle quality in patients with type 2 diabetes: a cross-sectional study. BMJ Open Diabetes Res Care. 2017;5:e000404.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Benjamin J, Shasthry V, Kaal CR, Anand L, Bhardwaj A, Pandit V, et al. Characterization of body composition and definition of sarcopenia in patients with alcoholic cirrhosis: a computed tomography based study. Liver Int. 2017;37:1668–74.PubMedCrossRefGoogle Scholar
  117. 117.
    Hashimoto Y, Osaka T, Fukuda T, Tanaka M, Yamazaki M, Fukui M. The relationship between hepatic steatosis and skeletal muscle mass index in men with type 2 diabetes. Endocr J. 2016;63:877–84.PubMedCrossRefGoogle Scholar
  118. 118.
    Abad IR. Descriptive study of cancer of the cavum, particularly epidermoid carcinoma (1). Acta Otorrinolaringol Esp. 1989;40:81–99.Google Scholar
  119. 119.
    Hassan MM, Hwang LY, Hatten CJ, Swaim M, Li D, Abbruzzese JL, et al. Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. Hepatology. 2002;36:1206–13.PubMedCrossRefGoogle Scholar
  120. 120.
    Davila JA, Morgan RO, Shaib Y, McGlynn KA, El-Serag HB. Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. Gut. 2005;54:533–9.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Dyal HK, Aguilar M, Bartos G, Holt EW, Bhuket T, Liu B, et al. Diabetes mellitus increases risk of hepatocellular carcinoma in chronic hepatitis C virus patients: a systematic review. Dig Dis Sci. 2016;61:636–45.PubMedCrossRefGoogle Scholar
  122. 122.
    Reeves HL, Zaki MY, Day CP. Hepatocellular carcinoma in obesity, type 2 diabetes, and NAFLD. Dig Dis Sci. 2016;61:1234–45.PubMedCrossRefGoogle Scholar
  123. 123.
    Mantovani A, Targher G. Type 2 diabetes mellitus and risk of hepatocellular carcinoma: spotlight on nonalcoholic fatty liver disease. Ann Transl Med. 2017;5:270.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Simon TG, King LY, Chong DQ, Nguyen L, Ma Y, VoPham T, et al. Diabetes, metabolic comorbidities and risk of hepatocellular carcinoma: results from two prospective cohort studies. Hepatology. 2018;67(5):1797–806.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Huang YW, Wang TC, Yang SS, Lin SY, Fu SC, Hu JT, et al. Increased risk of hepatocellular carcinoma in chronic hepatitis C patients with new onset diabetes: a nation-wide cohort study. Aliment Pharmacol Ther. 2015;42:902–11.PubMedCrossRefGoogle Scholar
  126. 126.
    Kawaguchi T, Izumi N, Charlton MR, Sata M. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology. 2011;54:1063–70.PubMedCrossRefGoogle Scholar
  127. 127.
    Sandow J. Growth effects of insulin and insulin analogues. Arch Physiol Biochem. 2009;115:72–85.PubMedCrossRefGoogle Scholar
  128. 128.
    Saito K, Inoue S, Saito T, Kiso S, Ito N, Tamura S, et al. Augmentation effect of postprandial hyperinsulinaemia on growth of human hepatocellular carcinoma. Gut. 2002;51:100–4.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Barker BE, Fanger H, Farnes P. Human mammary slices in organ culture. I. Method of culture and preliminary observations on the effect of insulin. Exp Cell Res. 1964;35:437–48.PubMedCrossRefGoogle Scholar
  130. 130.
    Formisano P, Oriente F, Fiory F, Caruso M, Miele C, Maitan MA, et al. Insulin-activated protein kinase Cbeta bypasses Ras and stimulates mitogen-activated protein kinase activity and cell proliferation in muscle cells. Mol Cell Biol. 2000;20:6323–33.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Sandhu MS, Dunger DB, Giovannucci EL. Insulin, insulin-like growth factor-I (IGF-I), IGF binding proteins, their biologic interactions, and colorectal cancer. J Natl Cancer Inst. 2002;94:972–80.PubMedCrossRefGoogle Scholar
  132. 132.
    Le Roith D. Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl J Med. 1997;336:633–40.PubMedCrossRefGoogle Scholar
  133. 133.
    Scharf JG, Dombrowski F, Ramadori G. The IGF axis and hepatocarcinogenesis. Mol Pathol. 2001;54:138–44.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Alexia C, Fallot G, Lasfer M, Schweizer-Groyer G, Groyer A. An evaluation of the role of insulin-like growth factors (IGF) and of type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug-induced apoptosis. Biochem Pharmacol. 2004;68:1003–15.PubMedCrossRefGoogle Scholar
  135. 135.
    Hung CH, Wang JH, Hu TH, Chen CH, Chang KC, Yen YH, et al. Insulin resistance is associated with hepatocellular carcinoma in chronic hepatitis C infection. World J Gastroenterol. 2010;16:2265–71.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kuriyama S, Miwa Y, Fukushima H, Nakamura H, Toda K, Shiraki M, et al. Prevalence of diabetes and incidence of angiopathy in patients with chronic viral liver disease. J Clin Biochem Nutr. 2007;40:116–22.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Fujiwara F, Ishii M, Taneichi H, Miura M, Toshihiro M, Takebe N, et al. Low incidence of vascular complications in patients with diabetes mellitus associated with liver cirrhosis as compared with type 2 diabetes mellitus. Tohoku J Exp Med. 2005;205:327–34.PubMedCrossRefGoogle Scholar
  138. 138.
    Miyajima I, Kawaguchi T, Fukami A, Nagao Y, Adachi H, Sasaki S, et al. Chronic HCV infection was associated with severe insulin resistance and mild atherosclerosis: a population-based study in an HCV hyperendemic area. J Gastroenterol. 2013;48:93–100.PubMedCrossRefGoogle Scholar
  139. 139.
    Zuwala-Jagiello J, Pazgan-Simon M, Murawska-Cialowicz E, Simon K. Influence of diabetes on circulating apoptotic microparticles in patients with chronic hepatitis C. In Vivo. 2017;31:1027–34.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Leone S, Prosperi M, Costarelli S, Nasta P, Maggiolo F, Di Giambenedetto S, et al. Incidence and predictors of cardiovascular disease, chronic kidney disease, and diabetes in HIV/HCV-coinfected patients who achieved sustained virological response. Eur J Clin Microbiol Infect Dis. 2016;35:1511–20.PubMedCrossRefGoogle Scholar
  141. 141.
    Zhou YY, Zhou XD, Wu SJ, Hu XQ, Tang B, Poucke SV, et al. Synergistic increase in cardiovascular risk in diabetes mellitus with nonalcoholic fatty liver disease: a meta-analysis. Eur J Gastroenterol Hepatol. 2018;30(6):631–6.PubMedGoogle Scholar
  142. 142.
    Liccardo D, Mosca A, Petroni S, Valente P, Giordano U, Mico AG, et al. The association between retinal microvascular changes, metabolic risk factors, and liver histology in pediatric patients with non-alcoholic fatty liver disease (NAFLD). J Gastroenterol. 2015;50:903–12.PubMedCrossRefGoogle Scholar
  143. 143.
    Targher G, Lonardo A, Byrne CD. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol. 2018;14:99–114.PubMedCrossRefGoogle Scholar
  144. 144.
    Mantovani A, Zaza G, Byrne CD, Lonardo A, Zoppini G, Bonora E, et al. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: a systematic review and meta-analysis. Metabolism. 2018;79:64–76.PubMedCrossRefGoogle Scholar
  145. 145.
    Guo K, Zhang L, Lu J, Yu H, Wu M, Bao Y, et al. Non-alcoholic fatty liver disease is associated with late but not early atherosclerotic lesions in Chinese inpatients with type 2 diabetes. J Diabetes Complications. 2017;31:80–5.PubMedCrossRefGoogle Scholar
  146. 146.
    Dallio M, Masarone M, Caprio GG, Di Sarno R, Tuccillo C, Sasso FC, et al. Endocan serum levels in patients with non-alcoholic fatty liver disease with or without type 2 diabetes mellitus: a pilot study. J Gastrointestin Liver Dis. 2017;26:261–8.PubMedGoogle Scholar
  147. 147.
    Goh GB, Pan A, Chow WC, Yuan JM, Koh WP. Association between diabetes mellitus and cirrhosis mortality: the Singapore Chinese Health Study. Liver Int. 2017;37:251–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Wang YG, Wang P, Wang B, Fu ZJ, Zhao WJ, Yan SL. Diabetes mellitus and poorer prognosis in hepatocellular carcinoma: a systematic review and meta-analysis. PLoS One. 2014;9:e95485.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Dyson J, Jaques B, Chattopadyhay D, Lochan R, Graham J, Das D, et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol. 2014;60:110–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol. 2013;10:656–65.PubMedCrossRefGoogle Scholar
  151. 151.
    Huang TS, Lin CL, Lu MJ, Yeh CT, Liang KH, Sun CC, et al. Diabetes, hepatocellular carcinoma, and mortality in hepatitis C-infected patients: a population-based cohort study. J Gastroenterol Hepatol. 2017;32:1355–62.PubMedCrossRefGoogle Scholar
  152. 152.
    Younossi ZM, Stepanova M, Saab S, Kalwaney S, Clement S, Henry L, et al. The impact of type 2 diabetes and obesity on the long-term outcomes of more than 85 000 liver transplant recipients in the US. Aliment Pharmacol Ther. 2014;40:686–94.PubMedCrossRefGoogle Scholar
  153. 153.
    Suzuki K, Endo R, Kohgo Y, Ohtake T, Ueno Y, Kato A, et al. Guidelines on nutritional management in Japanese patients with liver cirrhosis from the perspective of preventing hepatocellular carcinoma. Hepatol Res. 2012;42:621–6.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Hashida R, Kawaguchi T, Bekki M, Omoto M, Matsuse H, Nago T, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J Hepatol. 2017;66:142–52.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Kawaguchi T, Yamagishi S, Sata M. Branched-chain amino acids and pigment epithelium-derived factor: novel therapeutic agents for hepatitis c virus-associated insulin resistance. Curr Med Chem. 2009;16:4843–57.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Sakata M, Kawahara A, Kawaguchi T, Akiba J, Taira T, Taniguchi E, et al. Decreased expression of insulin and increased expression of pancreatic transcription factor PDX-1 in islets in patients with liver cirrhosis: a comparative investigation using human autopsy specimens. J Gastroenterol. 2013;48:277–85.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Kawaguchi T, Taniguchi E, Morita Y, Shirachi M, Tateishi I, Nagata E, et al. Association of exogenous insulin or sulphonylurea treatment with an increased incidence of hepatoma in patients with hepatitis C virus infection. Liver Int. 2010;30:479–86.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Kawaguchi T, Kohjima M, Ichikawa T, Seike M, Ide Y, Mizuta T, et al. The morbidity and associated risk factors of cancer in chronic liver disease patients with diabetes mellitus: a multicenter field survey. J Gastroenterol. 2015;50:333–41.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol. 2013;108:881–91.. quiz 892PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Hassan MM, Curley SA, Li D, Kaseb A, Davila M, Abdalla EK, et al. Association of diabetes duration and diabetes treatment with the risk of hepatocellular carcinoma. Cancer. 2010;116:1938–46.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Chan KM, Kuo CF, Hsu JT, Chiou MJ, Wang YC, Wu TH, et al. Metformin confers risk reduction for developing hepatocellular carcinoma recurrence after liver resection. Liver Int. 2017;37:434–41.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Huang MY, Chung CH, Chang WK, Lin CS, Chen KW, Hsieh TY, et al. The role of thiazolidinediones in hepatocellular carcinoma risk reduction: a population-based cohort study in Taiwan. Am J Cancer Res. 2017;7:1606–16.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Singal AG, El-Serag HB. Hepatocellular carcinoma from epidemiology to prevention: translating knowledge into practice. Clin Gastroenterol Hepatol. 2015;13:2140–51.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Seo YS, Kim YJ, Kim MS, Suh KS, Kim SB, Han CJ, et al. Association of metformin use with cancer-specific mortality in hepatocellular carcinoma after curative resection: a nationwide population-based study. Medicine (Baltimore). 2016;95:e3527.CrossRefGoogle Scholar
  165. 165.
    Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab. 2016;311:E730–40.PubMedCrossRefGoogle Scholar
  166. 166.
    Hsu HT, Chi CW. Emerging role of the peroxisome proliferator-activated receptor-gamma in hepatocellular carcinoma. J Hepatocell Carcinoma. 2014;1:127–35.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Casadei Gardini A, Faloppi L, De Matteis S, Foschi FG, Silvestris N, Tovoli F, et al. Metformin and insulin impact on clinical outcome in patients with advanced hepatocellular carcinoma receiving sorafenib: validation study and biological rationale. Eur J Cancer. 2017;86:106–14.PubMedCrossRefGoogle Scholar
  168. 168.
    Casadei Gardini A, Marisi G, Scarpi E, Scartozzi M, Faloppi L, Silvestris N, et al. Effects of metformin on clinical outcome in diabetic patients with advanced HCC receiving sorafenib. Expert Opin Pharmacother. 2015;16:2719–25.PubMedCrossRefGoogle Scholar
  169. 169.
    Arase Y, Kawamura Y, Seko Y, Kobayashi M, Suzuki F, Suzuki Y, et al. Efficacy and safety in sitagliptin therapy for diabetes complicated by non-alcoholic fatty liver disease. Hepatol Res. 2013;43:1163–8.PubMedCrossRefGoogle Scholar
  170. 170.
    Fukuhara T, Hyogo H, Ochi H, Fujino H, Kan H, Naeshiro N, et al. Efficacy and safety of sitagliptin for the treatment of nonalcoholic fatty liver disease with type 2 diabetes mellitus. Hepatogastroenterology. 2014;61:323–8.PubMedGoogle Scholar
  171. 171.
    Asakawa M, Mitsui H, Akihisa M, Sekine T, Niitsu Y, Kobayashi A, et al. Efficacy and safety of sitagliptin for the treatment of diabetes mellitus complicated by chronic liver injury. Springerplus. 2015;4:346.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Mashitani T, Noguchi R, Okura Y, Namisaki T, Mitoro A, Ishii H, et al. Efficacy of alogliptin in preventing non-alcoholic fatty liver disease progression in patients with type 2 diabetes. Biomed Rep. 2016;4:183–7.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Okura Y, Namisaki T, Moriya K, Kitade M, Takeda K, Kaji K, et al. Combined treatment with dipeptidyl peptidase-4 inhibitor (sitagliptin) and angiotensin-II type 1 receptor blocker (losartan) suppresses progression in a non-diabetic rat model of steatohepatitis. Hepatol Res. 2017;47:1317–28.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Itou M, Kawaguchi T, Taniguchi E, Sata M. Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol. 2013;19:2298–306.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Jojima T, Tomotsune T, Iijima T, Akimoto K, Suzuki K, Aso Y. Empagliflozin (an SGLT2 inhibitor), alone or in combination with linagliptin (a DPP-4 inhibitor), prevents steatohepatitis in a novel mouse model of non-alcoholic steatohepatitis and diabetes. Diabetol Metab Syndr. 2016;8:45.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Klein T, Fujii M, Sandel J, Shibazaki Y, Wakamatsu K, Mark M, et al. Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis. Med Mol Morphol. 2014;47:137–49.PubMedCrossRefGoogle Scholar
  177. 177.
    Jung YA, Choi YK, Jung GS, Seo HY, Kim HS, Jang BK, et al. Sitagliptin attenuates methionine/choline-deficient diet-induced steatohepatitis. Diabetes Res Clin Pract. 2014;105:47–57.PubMedCrossRefGoogle Scholar
  178. 178.
    Hwang HJ, Jung TW, Kim BH, Hong HC, Seo JA, Kim SG, et al. A dipeptidyl peptidase-IV inhibitor improves hepatic steatosis and insulin resistance by AMPK-dependent and JNK-dependent inhibition of LECT2 expression. Biochem Pharmacol. 2015;98:157–66.PubMedCrossRefGoogle Scholar
  179. 179.
    Ideta T, Shirakami Y, Miyazaki T, Kochi T, Sakai H, Moriwaki H, et al. The dipeptidyl peptidase-4 inhibitor teneligliptin attenuates hepatic lipogenesis via AMPK activation in non-alcoholic fatty liver disease model mice. Int J Mol Sci. 2015;16:29207–18.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Wang H, Liu X, Long M, Huang Y, Zhang L, Zhang R, et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci Transl Med. 2016;8:334–51.Google Scholar
  181. 181.
    Harada M, Yoneda A, Haruyama S, Yabuki K, Honma Y, Hiura M, et al. Bullous pemphigoid associated with the dipeptidyl peptidase-4 inhibitor sitagliptin in a patient with liver cirrhosis complicated with rapidly progressive hepatocellular carcinoma. Intern Med. 2017;56:2471–4.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Gomez-Peralta F, Abreu C, Lecube A, Bellido D, Soto A, Morales C, et al. Practical approach to initiating SGLT2 inhibitors in type 2 diabetes. Diabetes Ther. 2017;8:953–62.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60:215–25.PubMedCrossRefGoogle Scholar
  184. 184.
    Tanaka A, Node K. Emerging roles of sodium-glucose cotransporter 2 inhibitors in cardiology. J Cardiol. 2017;69:501–7.PubMedCrossRefGoogle Scholar
  185. 185.
    Hayashizaki-Someya Y, Kurosaki E, Takasu T, Mitori H, Yamazaki S, Koide K, et al. Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. Eur J Pharmacol. 2015;754:19–24.PubMedCrossRefGoogle Scholar
  186. 186.
    Nakano S, Katsuno K, Isaji M, Nagasawa T, Buehrer B, Walker S, et al. Remogliflozin etabonate improves fatty liver disease in diet-induced obese male mice. J Clin Exp Hepatol. 2015;5:190–8.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Qiang S, Nakatsu Y, Seno Y, Fujishiro M, Sakoda H, Kushiyama A, et al. Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus. Diabetol Metab Syndr. 2015;7:104.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Takeda A, Irahara A, Nakano A, Takata E, Koketsu Y, Kimata K, et al. The improvement of the hepatic histological findings in a patient with non-alcoholic steatohepatitis with type 2 diabetes after the administration of the sodium-glucose cotransporter 2 inhibitor ipragliflozin. Intern Med. 2017;56:2739–44.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Tobita H, Sato S, Miyake T, Ishihara S, Kinoshita Y. Effects of dapagliflozin on body composition and liver tests in patients with nonalcoholic steatohepatitis associated with type 2 diabetes mellitus: a prospective, open-label, uncontrolled study. Curr Ther Res Clin Exp. 2017;87:13–9.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Ito D, Shimizu S, Inoue K, Saito D, Yanagisawa M, Inukai K, et al. Comparison of ipragliflozin and pioglitazone effects on nonalcoholic fatty liver disease in patients with type 2 diabetes: a randomized, 24-week, open-label, active-controlled trial. Diabetes Care. 2017;40:1364–72.PubMedCrossRefGoogle Scholar
  191. 191.
    Shibuya T, Fushimi N, Kawai M, Yoshida Y, Hachiya H, Ito S, et al. Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: a prospective randomized controlled pilot study. Diabetes Obes Metab. 2018;20:438–42.PubMedCrossRefGoogle Scholar
  192. 192.
    Komiya C, Tsuchiya K, Shiba K, Miyachi Y, Furuke S, Shimazu N, et al. Ipragliflozin improves hepatic steatosis in obese mice and liver dysfunction in type 2 diabetic patients irrespective of body weight reduction. PLoS One. 2016;11:e0151511.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Honda Y, Imajo K, Kato T, Kessoku T, Ogawa Y, Tomeno W, et al. The selective SGLT2 inhibitor ipragliflozin has a therapeutic effect on nonalcoholic steatohepatitis in mice. PLoS One. 2016;11:e0146337.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 2018;53(3):362–76.PubMedCrossRefGoogle Scholar
  195. 195.
    Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A. 2015;112:E4111–9.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Saito T, Okada S, Yamada E, Shimoda Y, Osaki A, Tagaya Y, et al. Effect of dapagliflozin on colon cancer cell [Rapid Communication]. Endocr J. 2015;62:1133–7.PubMedCrossRefGoogle Scholar
  197. 197.
    Okada J, Matsumoto S, Kaira K, Saito T, Yamada E, Yokoo H, et al. Sodium glucose cotransporter 2 inhibition combined with cetuximab significantly reduced tumor size and carcinoembryonic antigen level in colon cancer metastatic to liver. Clin Colorectal Cancer. 2018;17(1):e45–8.PubMedCrossRefGoogle Scholar
  198. 198.
    Obara K, Shirakami Y, Maruta A, Ideta T, Miyazaki T, Kochi T, et al. Preventive effects of the sodium glucose cotransporter 2 inhibitor tofogliflozin on diethylnitrosamine-induced liver tumorigenesis in obese and diabetic mice. Oncotarget. 2017;8:58353–63.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Kaji K, Nishimura N, Seki K, Sato S, Saikawa S, Nakanishi K, et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int J Cancer. 2017;142(8):1712–22.PubMedCrossRefGoogle Scholar
  200. 200.
    Tang H, Dai Q, Shi W, Zhai S, Song Y, Han J. SGLT2 inhibitors and risk of cancer in type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Diabetologia. 2017;60:1862–72.PubMedCrossRefGoogle Scholar
  201. 201.
    Donadon V, Balbi M, Casarin P, Vario A, Alberti A. Association between hepatocellular carcinoma and type 2 diabetes mellitus in Italy: potential role of insulin. World J Gastroenterol. 2008;14:5695–700.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Donadon V, Balbi M, Ghersetti M, Grazioli S, Perciaccante A, Della Valentina G, et al. Antidiabetic therapy and increased risk of hepatocellular carcinoma in chronic liver disease. World J Gastroenterol. 2009;15:2506–11.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Bosetti C, Franchi M, Nicotra F, Asciutto R, Merlino L, La Vecchia C, et al. Insulin and other antidiabetic drugs and hepatocellular carcinoma risk: a nested case-control study based on Italian healthcare utilization databases. Pharmacoepidemiol Drug Saf. 2015;24:771–8.PubMedCrossRefGoogle Scholar
  204. 204.
    Lee MS, Hsu CC, Wahlqvist ML, Tsai HN, Chang YH, Huang YC. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer. 2011;11:20.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Zhang H, Gao C, Fang L, Zhao HC, Yao SK. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients: a meta-analysis. Scand J Gastroenterol. 2013;48:78–87.PubMedCrossRefGoogle Scholar
  206. 206.
    Zhang ZJ, Zheng ZJ, Shi R, Su Q, Jiang Q, Kip KE. Metformin for liver cancer prevention in patients with type 2 diabetes: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2012;97:2347–53.PubMedCrossRefGoogle Scholar
  207. 207.
    Chen TM, Lin CC, Huang PT, Wen CF. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. J Gastroenterol Hepatol. 2011;26:858–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Gastroenterology, Department of MedicineKurume University School of MedicineKurumeJapan

Personalised recommendations