Skip to main content

Metabolic Myopathies and Related Diseases

  • Chapter
  • First Online:
Myopathology

Abstract

The term “metabolism” has its origin from the Greek word metaballen which means “change.” It is the process of transformation (change) of chemical compounds (metabolites) in the body by virtue of tightly regulated chemical reactions (pathways) to sustain life. Metabolic myopathies (MM) refer to a set of muscle disorders caused by impairment in the metabolism of substrates to energy producing adenosine triphosphate (ATP) via oxidative phosphorylation (Fig. 12.1) [1]. They can be broadly categorized into glycogen storage diseases (GSD), fatty acid oxidation defects (FAOD), and mitochondrial disorders. Mitochondrial myopathies by themselves form a diverse group and hence are discussed separately (Chap. 10). The gamut of metabolic myopathies is broad ranging from infantile to adult-onset isolated myopathies or multisystem involvement. Hence, the diagnosis is often challenging. However, distinct clinicopathological features help in the recognition of these rare diseases. In this chapter, we will be discussing the normal metabolic pathways and the defects involving the carbohydrate and lipid metabolism, clinical features, laboratory investigations, and myopathological features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berardo A, DiMauro S, Hirano M. A diagnostic algorithm for metabolic myopathies. Curr Neurol Neurosci Rep. 2010;10:118–26.

    Article  CAS  Google Scholar 

  2. Tarnopolsky MA. Metabolic Myopathies. Continuum (Minneap Minn). 2016;22:1829–51.

    Google Scholar 

  3. Terjung RL, Clarkson P, Eichner ER, et al. American College of Sports Medicine roundtable. The physiological and health effects of oral creatine supplementation. Med Sci Sports Exerc. 2000;32:706–17.

    Article  CAS  Google Scholar 

  4. Gibala MJ, MacLean DA, Graham TE, et al. Anaplerotic processes in human skeletal muscle during brief dynamic exercise. J Physiol. 1997;502(Pt 3):703–13.

    Article  CAS  Google Scholar 

  5. Romijn JA, Coyle EF, Sidossis LS, et al. Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol (1985). 2000;88:1707–14.

    Article  CAS  Google Scholar 

  6. Phillips SM, Green HJ, Tarnopolsky MA, et al. Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol (1985). 1996;81:2182–91.

    Article  CAS  Google Scholar 

  7. Phillips SM, Green HJ, Tarnopolsky MA, et al. Progressive effect of endurance training on metabolic adaptations in working skeletal muscle. Am J Phys. 1996;270:E265–72.

    Article  CAS  Google Scholar 

  8. McKenzie S, Phillips SM, Carter SL, et al. Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am J Physiol Endocrinol Metab. 2000;278:E580–7.

    Article  CAS  Google Scholar 

  9. Monaco C, Whitfield J, Jain SS, et al. Activation of AMPKalpha2 is not required for mitochondrial FAT/CD36 accumulation during exercise. PLoS One. 2015;10:e0126122.

    Article  Google Scholar 

  10. Tein I. Neonatal metabolic myopathies. Semin Perinatol. 1999;23:125–51.

    Article  CAS  Google Scholar 

  11. Miro O, Laguno M, Masanes F, et al. Congenital and metabolic myopathies of childhood or adult onset. Semin Arthritis Rheum. 2000;29:335–47.

    Article  Google Scholar 

  12. De Filippi P, Saeidi K, Ravaglia S, et al. Genotype-phenotype correlation in Pompe disease, a step forward. Orphanet J Rare Dis. 2014;9:102.

    Article  Google Scholar 

  13. Shin YS. Glycogen storage disease: clinical, biochemical, and molecular heterogeneity. Semin Pediatr Neurol. 2006;13:115–20.

    Article  Google Scholar 

  14. Illingworth B, Cori GT. Structure of glycogens and amylopectins. III. Normal and abnormal human glycogen. J Biol Chem. 1952;199:653–60.

    CAS  PubMed  Google Scholar 

  15. Forbes GB. Glycogen storage disease; report of a case with abnormal glycogen structure in liver and skeletal muscle. J Pediatr. 1953;42:645–53.

    Article  CAS  Google Scholar 

  16. Kishnani PS, Austin SL, Arn P, et al. Glycogen storage disease type III diagnosis and management guidelines. Genet Med. 2010;12:446–63.

    Article  CAS  Google Scholar 

  17. Coleman RA, Winter HS, Wolf B, et al. Glycogen debranching enzyme deficiency: long-term study of serum enzyme activities and clinical features. J Inherit Metab Dis. 1992;15:869–81.

    Article  CAS  Google Scholar 

  18. Ferguson IT, Mahon M, Cumming WJ. An adult case of Andersen’s disease—Type IV glycogenosis. A clinical, histochemical, ultrastructural and biochemical study. J Neurol Sci. 1983;60:337–51.

    Article  CAS  Google Scholar 

  19. Goebel HH, Shin YS, Gullotta F, et al. Adult polyglucosan body myopathy. J Neuropathol Exp Neurol. 1992;51:24–35.

    Article  CAS  Google Scholar 

  20. Mc AB. Myopathy due to a defect in muscle glycogen breakdown. Clin Sci. 1951;10:13–35.

    Google Scholar 

  21. Tsujino S, Shanske S, DiMauro S. Molecular genetic heterogeneity of myophosphorylase deficiency (McArdle’s disease). N Engl J Med. 1993;329:241–5.

    Article  CAS  Google Scholar 

  22. Lucia A, Ruiz JR, Santalla A, et al. Genotypic and phenotypic features of McArdle disease: insights from the Spanish national registry. J Neurol Neurosurg Psychiatry. 2012;83:322–8.

    Article  Google Scholar 

  23. De Castro M, Johnston J, Biesecker L. Determining the prevalence of McArdle disease from gene frequency by analysis of next-generation sequencing data. Genet Med. 2015;17:1002–6.

    Article  Google Scholar 

  24. Huxley H, Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954;173:973–6.

    Article  CAS  Google Scholar 

  25. Huxley AF, Niedergerke R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954;173:971–3.

    Article  CAS  Google Scholar 

  26. Pearson CM, Rimer DG, Mommaerts WF. A metabolic myopathy due to absence of muscle phosphorylase. Am J Med. 1961;30:502–17.

    Article  CAS  Google Scholar 

  27. Vissing J, Haller RG. A diagnostic cycle test for McArdle’s disease. Ann Neurol. 2003;54:539–42.

    Article  Google Scholar 

  28. Gladden LB. Muscle as a consumer of lactate. Med Sci Sports Exerc. 2000;32:764–71.

    Article  CAS  Google Scholar 

  29. Donovan CM, Pagliassotti MJ. Quantitative assessment of pathways for lactate disposal in skeletal muscle fiber types. Med Sci Sports Exerc. 2000;32:772–7.

    Article  CAS  Google Scholar 

  30. Gruener R, McArdle B, Ryman BE, et al. Contracture of phosphorylase deficient muscle. J Neurol Neurosurg Psychiatry. 1968;31:268–83.

    Article  CAS  Google Scholar 

  31. Quinlivan R, Buckley J, James M, et al. McArdle disease: a clinical review. J Neurol Neurosurg Psychiatry. 2010;81:1182–8.

    Article  CAS  Google Scholar 

  32. Godfrey R, Quinlivan R. Skeletal muscle disorders of glycogenolysis and glycolysis. Nat Rev Neurol. 2016;12:393–402.

    Article  CAS  Google Scholar 

  33. Tarui S, Okuno G, Ikura Y, et al. Phosphofructokinase deficiency in skeletal muscle. A new type of glycogenosis. Biochem Biophys Res Commun. 1965;19:517–23.

    Article  CAS  Google Scholar 

  34. Tarui S. Glycolytic defects in muscle: aspects of collaboration between basic science and clinical medicine. Muscle Nerve Suppl. 1995;3:S2–9.

    Article  CAS  Google Scholar 

  35. Vora S, Seaman C, Durham S, et al. Isozymes of human phosphofructokinase: identification and subunit structural characterization of a new system. Proc Natl Acad Sci USA. 1980;77:62–6.

    Article  CAS  Google Scholar 

  36. Nakajima H, Raben N, Hamaguchi T, et al. Phosphofructokinase deficiency; past, present and future. Curr Mol Med. 2002;2:197–212.

    Article  CAS  Google Scholar 

  37. Vissing J, Galbo H, Haller RG. Paradoxically enhanced glucose production during exercise in humans with blocked glycolysis caused by muscle phosphofructokinase deficiency. Neurology. 1996;47:766–71.

    Article  CAS  Google Scholar 

  38. Ronquist G, Rudolphi O, Engstrom I, et al. Familial phosphofructokinase deficiency is associated with a disturbed calcium homeostasis in erythrocytes. J Intern Med. 2001;249:85–95.

    Article  CAS  Google Scholar 

  39. Agamanolis DP, Askari AD, Di Mauro S, et al. Muscle phosphofructokinase deficiency: two cases with unusual polysaccharide accumulation and immunologically active enzyme protein. Muscle Nerve. 1980;3:456–67.

    Article  CAS  Google Scholar 

  40. Auranen M, Palmio J, Ylikallio E, et al. PFKM gene defect and glycogen storage disease GSDVII with misleading enzyme histochemistry. Neurol Genet. 2015;1:e7.

    Article  Google Scholar 

  41. Beutler E. PGK deficiency. Br J Haematol. 2007;136:3–11.

    Article  CAS  Google Scholar 

  42. Spiegel R, Gomez EA, Akman HO, et al. Myopathic form of phosphoglycerate kinase (PGK) deficiency: a new case and pathogenic considerations. Neuromuscul Disord. 2009;19:207–11.

    Article  Google Scholar 

  43. DiMauro S, Dalakas M, Miranda AF. Phosphoglycerate kinase deficiency: another cause of recurrent myoglobinuria. Ann Neurol. 1983;13:11–9.

    Article  CAS  Google Scholar 

  44. Beauchamp NJ, Dalton A, Ramaswami U, et al. Glycogen storage disease type IX: High variability in clinical phenotype. Mol Genet Metab. 2007;92:88–99.

    Article  CAS  Google Scholar 

  45. Hug G, Schubert WK, Chuck G. Phosphorylase kinase of the liver: deficiency in a girl with increased hepatic glycogen. Science. 1966;153:1534–5.

    Article  CAS  Google Scholar 

  46. Orngreen MC, Schelhaas HJ, Jeppesen TD, et al. Is muscle glycogenolysis impaired in X-linked phosphorylase b kinase deficiency? Neurology. 2008;70:1876–82.

    Article  CAS  Google Scholar 

  47. Smith EC, El-Gharbawy A, Koeberl DD. Metabolic myopathies: clinical features and diagnostic approach. Rheum Dis Clin N Am. 2011;37:201–17, vi.

    Article  Google Scholar 

  48. Clemens PR, Yamamoto M, Engel AG. Adult phosphorylase b kinase deficiency. Ann Neurol. 1990;28:529–38.

    Article  CAS  Google Scholar 

  49. Buhrer C, van Landeghem F, Bruck W, et al. Fetal-onset severe skeletal muscle glycogenosis associated with phosphorylase-b kinase deficiency. Neuropediatrics. 2000;31:104–6.

    Article  Google Scholar 

  50. Tsujino S, Sakoda S, Mizuno R, et al. Structure of the gene encoding the muscle-specific subunit of human phosphoglycerate mutase. J Biol Chem. 1989;264:15334–7.

    CAS  PubMed  Google Scholar 

  51. Tonin P, Bruno C, Cassandrini D, et al. Unusual presentation of phosphoglycerate mutase deficiency due to two different mutations in PGAM-M gene. Neuromuscul Disord. 2009;19:776–8.

    Article  Google Scholar 

  52. Vita G, Toscano A, Bresolin N, et al. Muscle phosphoglycerate mutase (PGAM) deficiency in the first Caucasian patient: biochemistry, muscle culture and 31P-MR spectroscopy. J Neurol. 1994;241:289–94.

    Article  CAS  Google Scholar 

  53. Koo B, Oskarsson B. Phosphoglycerate mutase deficiency (glycogen storage disease X) caused by a novel variant in PGAM-M. Neuromuscul Disord. 2016;26:688–90.

    Article  Google Scholar 

  54. Tsujino S, Shanske S, Sakoda S, et al. The molecular genetic basis of muscle phosphoglycerate mutase (PGAM) deficiency. Am J Hum Genet. 1993;52:472–7.

    Google Scholar 

  55. Toscano A, Tsujino S, Vita G, et al. Molecular basis of muscle phosphoglycerate mutase (PGAM-M) deficiency in the Italian kindred. Muscle Nerve. 1996;19:1134–7.

    Article  CAS  Google Scholar 

  56. Vissing J, Schmalbruch H, Haller RG, et al. Muscle phosphoglycerate mutase deficiency with tubular aggregates: effect of dantrolene. Ann Neurol. 1999;46:274–7.

    Article  CAS  Google Scholar 

  57. Naini A, Toscano A, Musumeci O, et al. Muscle phosphoglycerate mutase deficiency revisited. Arch Neurol. 2009;66:394–8.

    Google Scholar 

  58. Oh SJ, Park KS, Ryan HF Jr, et al. Exercise-induced cramp, myoglobinuria, and tubular aggregates in phosphoglycerate mutase deficiency. Muscle Nerve. 2006;34:572–6.

    Article  CAS  Google Scholar 

  59. Chen SH, Giblett ER. Enolase: human tissue distribution and evidence for three different loci. Ann Hum Genet. 1976;39:277–80.

    Article  CAS  Google Scholar 

  60. Peshavaria M, Day IN. Molecular structure of the human muscle-specific enolase gene (ENO3). Biochem J. 1991;275(Pt 2):427–33.

    Article  CAS  Google Scholar 

  61. Comi GP, Fortunato F, Lucchiari S, et al. Beta-enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann Neurol. 2001;50:202–7.

    Article  CAS  Google Scholar 

  62. Musumeci O, Brady S, Rodolico C, et al. Recurrent rhabdomyolysis due to muscle beta-enolase deficiency: very rare or underestimated? J Neurol. 2014;261:2424–8.

    Article  Google Scholar 

  63. Beamer LJ. Mutations in hereditary phosphoglucomutase 1 deficiency map to key regions of enzyme structure and function. J Inherit Metab Dis. 2015;38:243–56.

    Article  CAS  Google Scholar 

  64. Stojkovic T, Vissing J, Petit F, et al. Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N Engl J Med. 2009;361:425–7.

    Article  CAS  Google Scholar 

  65. Tegtmeyer LC, Rust S, van Scherpenzeel M, et al. Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med. 2014;370:533–42.

    Article  CAS  Google Scholar 

  66. Jenkins CM, Mancuso DJ, Yan W, et al. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem. 2004;279:48968–75.

    Article  CAS  Google Scholar 

  67. Zimmermann R, Strauss JG, Haemmerle G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306:1383–6.

    Article  CAS  Google Scholar 

  68. Villena JA, Roy S, Sarkadi-Nagy E, et al. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem. 2004;279:47066–75.

    Article  CAS  Google Scholar 

  69. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7:606–19.

    Article  CAS  Google Scholar 

  70. Vaz FM, Wanders RJ. Carnitine biosynthesis in mammals. Biochem J. 2002;361:417–29.

    Article  CAS  Google Scholar 

  71. Laforet P, Vianey-Saban C, Vissing J. 162nd ENMC International Workshop: Disorders of muscle lipid metabolism in adults 28-30 November 2008, Bussum, The Netherlands. Neuromuscul Disord. 2010;20:283–9.

    Article  Google Scholar 

  72. Laforet P, Vianey-Saban C. Disorders of muscle lipid metabolism: diagnostic and therapeutic challenges. Neuromuscul Disord. 2010;20:693–700.

    Article  Google Scholar 

  73. Vishwanath VA. Fatty acid beta-oxidation disorders: a brief review. Ann Neurosci. 2016;23:51–5.

    Article  Google Scholar 

  74. DiMauro S, DiMauro PM. Muscle carnitine palmitoyltransferase deficiency and myoglobinuria. Science. 1973;182:929–31.

    Article  CAS  Google Scholar 

  75. Rinaldo P, Matern D, Bennett MJ. Fatty acid oxidation disorders. Annu Rev Physiol. 2002;64:477–502.

    Article  CAS  Google Scholar 

  76. Thuillier L, Rostane H, Droin V, et al. Correlation between genotype, metabolic data, and clinical presentation in carnitine palmitoyltransferase 2 (CPT2) deficiency. Hum Mutat. 2003;21:493–501.

    Article  CAS  Google Scholar 

  77. Corti S, Bordoni A, Ronchi D, et al. Clinical features and new molecular findings in carnitine palmitoyltransferase II (CPT II) deficiency. J Neurol Sci. 2008;266:97–103.

    Article  CAS  Google Scholar 

  78. Schymik I, Liebig M, Mueller M, et al. Pitfalls of neonatal screening for very-long-chain acyl-CoA dehydrogenase deficiency using tandem mass spectrometry. J Pediatr. 2006;149:128–30.

    Article  CAS  Google Scholar 

  79. Laforet P, Acquaviva-Bourdain C, Rigal O, et al. Diagnostic assessment and long-term follow-up of 13 patients with very long-chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul Disord. 2009;19:324–9.

    Article  Google Scholar 

  80. Ohashi Y, Hasegawa Y, Murayama K, et al. A new diagnostic test for VLCAD deficiency using immunohistochemistry. Neurology. 2004;62:2209–13.

    Article  CAS  Google Scholar 

  81. Spiekerkoetter U, Bennett MJ, Ben-Zeev B, et al. Peripheral neuropathy, episodic myoglobinuria, and respiratory failure in deficiency of the mitochondrial trifunctional protein. Muscle Nerve. 2004;29:66–72.

    Article  Google Scholar 

  82. Wilcken B. Fatty acid oxidation disorders: outcome and long-term prognosis. J Inherit Metab Dis. 2010;33:501–6.

    Article  CAS  Google Scholar 

  83. Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta. 2016;1863:2422–35.

    Article  CAS  Google Scholar 

  84. Longo N, Amat di San Filippo C, Pasquali M. Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet. 2006;142C:77–85.

    Article  CAS  Google Scholar 

  85. Schimmenti LA, Crombez EA, Schwahn BC, et al. Expanded newborn screening identifies maternal primary carnitine deficiency. Mol Genet Metab. 2007;90:441–5.

    Article  CAS  Google Scholar 

  86. Ohkuma A, Noguchi S, Sugie H, et al. Clinical and genetic analysis of lipid storage myopathies. Muscle Nerve. 2009;39:333–42.

    Article  Google Scholar 

  87. Liang WC, Nishino I. Lipid storage myopathy. Curr Neurol Neurosci Rep. 2011;11:97–103.

    Article  CAS  Google Scholar 

  88. Pike GN, Jones S, Coassin S, et al. Jordan’s anomaly in a case of Chanarin-Dorfman syndrome. Br J Haematol. 2011;155:412.

    Article  Google Scholar 

  89. Elitzur S, Yacobovich J, Dgany O, et al. From blood smear to lipid disorder: a case report. J Pediatr Hematol Oncol. 2013;35:e329–31.

    Article  Google Scholar 

  90. Bruno C, Bertini E, Di Rocco M, et al. Clinical and genetic characterization of Chanarin-Dorfman syndrome. Biochem Biophys Res Commun. 2008;369:1125–8.

    Article  CAS  Google Scholar 

  91. Pahwa M, Kar R, Singh A, et al. Chanarin-Dorfman syndrome with eccrine gland vacuolation: a case report. Int J Dermatol. 2008;47:1257–9.

    Article  Google Scholar 

  92. Lefèvre C, Jobard F, Caux F, et al. Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am J Hum Genet. 2001;69:1002–12.

    Article  Google Scholar 

  93. Fischer J, Lefèvre C, Morava E, et al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet. 2007;39:28–30.

    Article  Google Scholar 

  94. Ohkuma A, Nonaka I, Malicdan MC, et al. Distal lipid storage myopathy due to PNPLA2 mutation. Neuromuscul Disord. 2008;18:671–4.

    Article  Google Scholar 

  95. Campagna F, Nanni L, Quagliarini F, et al. Novel mutations in the adipose triglyceride lipase gene causing neutral lipid storage disease with myopathy. Biochem Biophys Res Commun. 2008;377:843–6.

    Article  CAS  Google Scholar 

  96. Angle B, Burton BK. Risk of sudden death and acute life threatening events in patients with glutaric acidemia type II. Mol Genet Metab. 2008;93:36–9.

    Article  CAS  Google Scholar 

  97. Olsen RK, Olpin SE, Andresen BS, et al. ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain. 2007;130:2045–54.

    Article  Google Scholar 

  98. Gempel K, Topaloglu H, Talim B, et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electrontransferring-flavoprotein dehydrogenase (ETFDH) gene. Brain. 2007;130:2037–44.

    Google Scholar 

  99. Zeharia A, Shaag A, Houtkooper RH, et al. Mutations in LPIN1 cause recurrent acute myoglobinuria in childhood. Am J Hum Genet. 2008;83:489–94.

    Article  CAS  Google Scholar 

  100. Ruitenbeek W, Poels PJ, Turnbull DM, et al. Rhabdomyolysis and acute encephalopathy in late onset medium chain acyl-CoA dehydrogenase deficiency. J Neurol Neurosurg Psychiatry. 1995;58:209–14.

    Article  CAS  Google Scholar 

  101. Lang TF. Adult presentations of medium-chain acyl-CoA dehydrogenase deficiency (MCADD). J Inherit Metab Dis. 2009;32:675–83.

    Article  CAS  Google Scholar 

  102. van Maldegem BT, Duran M, Wanders RJ, et al. Clinical, biochemical, and genetic heterogeneity in short-chain acyl coenzyme A dehydrogenase deficiency. JAMA. 2006;296:943–52.

    Article  CAS  Google Scholar 

  103. Tein I, Elpeleg O, Ben-Zeev B, et al. Short-chain acyl-CoA dehydrogenase gene mutation (c.319C>T) presents with clinical heterogeneity and is candidate founder mutation in individuals of Ashkenazi Jewish origin. Mol Genet Metab. 2008;93:179–89.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaspar, B.L., Vasishta, R.K., Radotra, B.D. (2019). Metabolic Myopathies and Related Diseases. In: Myopathology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1462-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1462-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1461-2

  • Online ISBN: 978-981-13-1462-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics