Skip to main content

Molecular Regulation Mechanism of Biomineralization of Pinctada fucata

  • Chapter
  • First Online:
Biomineralization Mechanism of the Pearl Oyster, Pinctada fucata

Abstract

To elucidate the mechanism of biomineralization in Pinctada fucata, most of the researchers put their attention on the roles of matrix proteins in shell formation. Our group has identified and characterized many essential matrix proteins in the regulation of deposition of calcium carbonate crystals in both prism and nacre layers, as described in the former chapter. Meanwhile, the regulation of the transcription, translation and expression of matrix proteins and how these regulatory factors mediate the biomineralization have become a hot spot in recent years. In this chapter, we mainly assayed RACE to obtain the sequence of the members of signaling pathways and the transcriptional factors; real time-qPCR to analyze the expression pattern of these factors in different tissues and/or distinct time during shell repair and pearl sac; in situ hybridization to find out the expression location of specific genes in mantle tissue; luciferase assay and electrophoretic mobility assay (EMSA) to clarify the recruitment of transcriptional factors on promoters of matrix protein; yeast two hybridization to explore the interactions between different pathways. We demonstrate the function of NF-κB, TGFβ, Wnt signal pathway, G protein-mediated pathway and several transcriptional factors in mediating the biomineralization in Pinctada fucata. The mechanism of transcriptional regulation can give deep sight to the matrix protein expression pattern which enrich the theory of bionimeralization in Pinctada fucata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Colaianni, G. Brunetti, M.F. Faienza, S. Colucci, M. Grano, Osteoporosis and obesity: Role of Wnt pathway in human and murine models. World J. Orthop 5, 242 (2014)

    Article  Google Scholar 

  2. G. Chen, C. Deng, Y.-P. Li, TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8, 272 (2012)

    Article  CAS  Google Scholar 

  3. A. Rao et al., Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization. J. Struct. Biol. 183, 205–215 (2013)

    Article  CAS  Google Scholar 

  4. T. Mass et al., Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Curr. Biol. 23, 1126–1131 (2013)

    Article  CAS  Google Scholar 

  5. Y. Morino et al., A genome-wide survey of genes encoding transcription factors in the Japanese pearl oyster, Pinctada fucata: I. Homeobox genes. Zool. Sci. 30, 851–857 (2013)

    Article  CAS  Google Scholar 

  6. H. Koga et al., A genome-wide survey of genes encoding transcription factors in Japanese pearl oyster Pinctada fucata: II. Tbx, Fox, Ets, HMG, NFκB, bZIP, and C2H2 zinc fingers. Zool. Sci. 30, 858–867 (2013)

    Article  CAS  Google Scholar 

  7. K. Kalavantavanich, C.M. Schramm, Dexamethasone potentiates high-affinity β-agonist binding and G s α protein expression in airway smooth muscle. Am. J. Phys. Lung Cell. Mol. Phys. 278, L1101–L1106 (2000)

    CAS  Google Scholar 

  8. R. Sen, D. Baltimore, Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47, 921–928 (1986)

    Article  CAS  Google Scholar 

  9. M. Grossmann, Y. Nakamura, R. Grumont, S. Gerondakis, New insights into the roles of ReL/NF-κB transcription factors in immune function, hemopoiesis and human disease. Int. J. Biochem. Cell Biol. 31, 1209–1219 (1999)

    Article  CAS  Google Scholar 

  10. A. Denk, T. Wirth, B. Baumann, NF-κB transcription factors: critical regulators of hematopoiesis and neuronal survival. Cytokine Growth Factor Rev. 11, 303–320 (2000)

    Article  CAS  Google Scholar 

  11. S. Bell et al., Involvement of NF-κB signalling in skin physiology and disease. Cell. Signal. 15, 1–7 (2003)

    Article  CAS  Google Scholar 

  12. M.S. Hayden, S. Ghosh, Signaling to NF-κB. Genes. Dev. 18, 2195–2224 (2004)

    Article  CAS  Google Scholar 

  13. S.T. Whiteside, A. Israël, in Seminars in cancer biology (Elsevier), pp. 75–82

    Google Scholar 

  14. B. Boyce, L. Xing, G. Franzoso, U. Siebenlist, Required and nonessential functions of nuclear factor-kappa B in bone cells. Bone 25, 137–139 (1999)

    Article  CAS  Google Scholar 

  15. A. Robaszkiewicz et al., ARTD1 regulates osteoclastogenesis and bone homeostasis by dampening NF-κB-dependent transcription of IL-1β. Sci. Rep. 6 (2016)

    Google Scholar 

  16. J.Q. Feng et al., NF-κB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro. J. Biol. Chem. 278, 29130–29135 (2003)

    Article  CAS  Google Scholar 

  17. S. Ghosh, M.J. May, E.B. Kopp, NF-κB and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998)

    Article  CAS  Google Scholar 

  18. T. Nakashima, J.M. Penninger, RANKL and RANK as novel therapeutic targets for arthritis. Curr. Opin. Rheumatol. 15, 280–287 (2003)

    Article  CAS  Google Scholar 

  19. D. Zhang et al., Molecular characterization and expression analysis of the IκB gene from pearl oyster Pinctada fucata. Fish Shellfish Immunol. 26, 84–90 (2009)

    Article  Google Scholar 

  20. H. Miyamoto et al., A carbonic anhydrase from the nacreous layer in oyster pearls. Proc. Natl. Acad. Sci. 93, 9657–9660 (1996)

    Article  CAS  Google Scholar 

  21. D. Chin, G.M. Boyle, P.G. Parsons, W.B. Coman, What is transforming growth factor-beta (TGF-β)? Br. J. Plast. Surg. 57, 215–221 (2004)

    Article  Google Scholar 

  22. K. Miyazono, S. Maeda, T. Imamura, BMP receptor signaling: Transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 16, 251–263 (2005)

    Article  CAS  Google Scholar 

  23. A. Herpin et al., Structural and functional evidence for a singular repertoire of BMP receptor signal transducing proteins in the lophotrochozoan Crassostrea gigas suggests a shared ancestral BMP/activin pathway. FEBS J. 272, 3424–3440 (2005)

    Article  CAS  Google Scholar 

  24. H. Le Quéré, A. Herpin, A. Huvet, C. Lelong, P. Favrel, Structural and functional characterizations of an Activin type II receptor orthologue from the pacific oyster Crassostrea gigas. Gene 436, 101–107 (2009)

    Article  Google Scholar 

  25. A. Herpin et al., Structural and functional evidences for a type 1 TGF-β sensu stricto receptor in the lophotrochozoan Crassostrea gigas suggest conserved molecular mechanisms controlling mesodermal patterning across bilateria. Mech. Dev. 122, 695–705 (2005)

    Article  CAS  Google Scholar 

  26. A. Herpin, P. Favrel, C. Cunningham, Gene structure and expression of cg-ALR1, a type I activin-like receptor from the bivalve mollusc Crassostrea gigas. Gene 301, 21–30 (2002)

    Article  CAS  Google Scholar 

  27. H. Guo et al., Molecular characterization of TGF-β type I receptor gene (Tgfbr1) in Chlamys farreri, and the association of allelic variants with growth traits. PLoS One 7, e51005 (2012)

    Article  CAS  Google Scholar 

  28. J. Massagué, TGF-β signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998)

    Article  Google Scholar 

  29. S. Souchelnytskyi, P. Ten Dijke, K. Miyazono, C. Heldin, Phosphorylation of Ser165 in TGF-beta type I receptor modulates TGF-beta1-induced cellular responses. EMBO J. 15, 6231 (1996)

    Article  CAS  Google Scholar 

  30. T. Xie, A.L. Finelli, R.W. Padgett, The Drosophila saxophone gene: A serine-threonine kinase receptor of the TGF-beta superfamily. Science 263, 1756–1760 (1994)

    Article  CAS  Google Scholar 

  31. J.L. Wrana et al., Two distinct transmembrane serine/threonine kinases from Drosophila melanogaster form an activin receptor complex. Mol. Cell. Biol. 14, 944–950 (1994)

    Article  CAS  Google Scholar 

  32. Y.G. Chen, F. Liu, J. Massague, Mechanism of TGFβ receptor inhibition by FKBP12. EMBO J. 16, 3866–3876 (1997)

    Article  CAS  Google Scholar 

  33. C. Lelong, M. Mathieu, P. Favrel, Structure and expression of mGDF, a new member of the transforming growth factor-β superfamily in the bivalve mollusc Crassostrea gigas. FEBS J. 267, 3986–3993 (2000)

    CAS  Google Scholar 

  34. Y.-G. Chen, J. Massagué, Smad1 recognition and activation by the ALK1 group of transforming growth factor-β family receptors. J. Biol. Chem. 274, 3672–3677 (1999)

    Article  CAS  Google Scholar 

  35. C. Deal, Future therapeutic targets in osteoporosis. Curr. Opin. Rheumatol. 21, 380–385 (2009)

    Article  CAS  Google Scholar 

  36. K.W. Finnson, W.L. Parker, P. ten Dijke, M. Thorikay, A. Philip, ALK1 opposes ALK5/Smad3 signaling and expression of extracellular matrix components in human chondrocytes. J. Bone Miner. Res. 23, 896–906 (2008)

    Article  CAS  Google Scholar 

  37. M.-F. Iu et al., Dexamethasone suppresses Smad3 pathway in osteoblastic cells. J. Endocrinol. 185, 131–138 (2005)

    Article  CAS  Google Scholar 

  38. D. Yang, Y. Ding, B. Ying, Effects of hydrogen peroxide on the expression of transforming growth factor-茁 1 and Smad3 in A549 cells. Chin. J. Respir. Crit. Care Med. 7, 43–46 (2008)

    Google Scholar 

  39. T. Liu et al., BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. J. Cell. Physiol. 211, 728–735 (2007)

    Article  CAS  Google Scholar 

  40. C.J. Souza, C. MacDougall, B.K. Campbell, A.S. McNeilly, D.T. Baird, The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. J. Endocrinol. 169, R1–R6 (2001)

    Article  CAS  Google Scholar 

  41. S.E. Yi, A. Daluiski, R. Pederson, V. Rosen, K.M. Lyons, The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127, 621–630 (2000)

    CAS  Google Scholar 

  42. A. Liu, L.A. Niswander, Bone morphogenetic protein signalling and vertebrate nervous system development. Nat. Rev. Neurosci. 6, 945–954 (2005)

    Article  CAS  Google Scholar 

  43. C.B. Gonzales, D. Simmons, M. MacDougall, Competing roles of tGFβ and nma/bAMbI in Odontoblasts. J. Dent. Res. 89, 597–602 (2010)

    Article  CAS  Google Scholar 

  44. Y. Zhang et al., A novel matrix protein participating in the nacre framework formation of pearl oyster, Pinctada fucata. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 135, 565–573 (2003)

    Article  Google Scholar 

  45. H. Miyamoto, F. Miyoshi, J. Kohno, The carbonic anhydrase domain protein Nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the Mollusc Pinctada fucata. Zool. Sci. 22, 311–315 (2005). https://doi.org/10.2108/zsj.22.311

    Article  CAS  Google Scholar 

  46. M. Suzuki et al., Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem. J. 382, 205–213 (2004)

    Article  CAS  Google Scholar 

  47. C. Richardson, N. Runham, D. Crisp, A histological and ultrastructural study of the cells of the mantle edge of a marine bivalve, Cerastoderma edule. Tissue Cell 13, 715–730 (1981)

    Article  CAS  Google Scholar 

  48. T. Ikeda et al., Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J. Bone Miner. Metab. 23, 337–340 (2005)

    Article  Google Scholar 

  49. T. Furumatsu, T. Ozaki, H. Asahara, Smad3 activates the Sox9-dependent transcription on chromatin. Int. J. Biochem. Cell Biol. 41, 1198–1204 (2009)

    Article  CAS  Google Scholar 

  50. J.D. Peacock, D.J. Huk, H.N. Ediriweera, J. Lincoln, Sox9 transcriptionally represses Spp1 to prevent matrix mineralization in maturing heart valves and chondrocytes. PLoS One 6, e26769 (2011)

    Article  CAS  Google Scholar 

  51. Y.-J. Luo et al., The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nat. Commun. 6, 8301 (2015)

    Article  CAS  Google Scholar 

  52. F.H. Wilt, Developmental biology meets materials science: morphogenesis of biomineralized structures. Dev. Biol. 280, 15–25 (2005)

    Article  CAS  Google Scholar 

  53. T.R. Waller, Functional morphology and development of veliger larvae of European oyster, Ostrea edulis Linne. Smithsonian Contrib. Zool. 328, 1–70 (1981)

    Article  Google Scholar 

  54. R.T. Moon, A.D. Kohn, G.V. De Ferrari, A. Kaykas, WNT and beta-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5, 691–701 (2004). https://doi.org/10.1038/nrg1427

    Article  CAS  Google Scholar 

  55. T.P. Rao, M. Kuhl, An updated overview on Wnt signaling pathways: a prelude for more. Circ. Res. 106, 1798–1806 (2010). https://doi.org/10.1161/CIRCRESAHA.110.219840

    Article  CAS  Google Scholar 

  56. K.A. Tompkins, Wnt proteins in mineralized tissue development and homeostasis. Connect. Tissue Res. 52, 448–458 (2011). https://doi.org/10.3109/03008207.2011.616610

    Article  CAS  Google Scholar 

  57. P.D. McCrea, C.W. Turck, B. Gumbiner, A homolog of the armadillo protein in drosophila (plakoglobin) associated with e-cadherin. Science 254, 1359–1361 (1991). https://doi.org/10.1126/science.1962194

    Article  CAS  Google Scholar 

  58. M. Adamska et al., Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol. Dev. 12, 494–518 (2010). https://doi.org/10.1111/j.1525-142X.2010.00435.x

    Article  CAS  Google Scholar 

  59. C.D. Galetto, M.F. Izaguirre, V. Bessone, V.H. Casco, Isolation and nucleotide sequence analysis of the of Rhinella arenarum beta-catenin: an mRNA and protein expression study during the larval stages of the digestive tract development. Gene 511, 256–264 (2012). https://doi.org/10.1016/j.gene.2012.09.030

    Article  CAS  Google Scholar 

  60. F. Nollet, G. Berx, F. Molemans, R.F. Van, Genomic organization of the human beta-catenin gene (CTNNB1). Genomics 32, 413 (1996)

    Article  CAS  Google Scholar 

  61. A.H. Huber, W.I. Weis, The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105, 391–402 (2001). https://doi.org/10.1016/s0092-8674(01)00330-0

    Article  CAS  Google Scholar 

  62. C.M. Liu et al., Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002). https://doi.org/10.1016/s0092-8674(02)00685-2

    Article  CAS  Google Scholar 

  63. H.E. Weitzel et al., Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 131, 2947–2956 (2004). https://doi.org/10.1242/dev.01152

    Article  CAS  Google Scholar 

  64. N. Zhong, R.P. Gersch, M. Hadjiargyrou, Wnt signaling activation during bone regeneration and the role of Dishevelled in chondrocyte proliferation and differentiation. Bone 39, 5–16 (2006). https://doi.org/10.1016/j.bone.2005.12.008

    Article  CAS  Google Scholar 

  65. C.C. Malbon, H.Y. Wang, Dishevelled: a mobile scaffold catalyzing development. Curr. Top. Dev. Biol. 72(72), 153 (2006). https://doi.org/10.1016/s0070-2153(05)72002-0

    Article  CAS  Google Scholar 

  66. W. Kim, M. Kim, E.H. Jho, Wnt/beta-catenin signalling: from plasma membrane to nucleus. Biochem. J. 450, 9–21 (2013). https://doi.org/10.1042/BJ20121284

    Article  CAS  Google Scholar 

  67. M. Molenaar et al., XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996). https://doi.org/10.1016/s0092-8674(00)80112-9

    Article  CAS  Google Scholar 

  68. T. Kubota, T. Michigami, K. Ozono, Wnt signaling in bone metabolism. J. Bone Miner. Metab. 27, 265–271 (2009). https://doi.org/10.1007/s00774-009-0064-8

    Article  CAS  Google Scholar 

  69. T.A. Graham, C. Weaver, F. Mao, D. Kimelman, W.Q. Xu, Crystal structure of a beta-catenin/Tcf complex. Cell 103, 885–896 (2000). https://doi.org/10.1016/s0092-8674(00)00192-6

    Article  CAS  Google Scholar 

  70. H.E. Hamm, A. Gilchrist, Heterotrimeric G proteins. Curr. Opin. Cell Biol. 8, 189–196 (1996)

    Article  CAS  Google Scholar 

  71. J.H. Hurley, Structure, mechanism, and regulation of mammalian adenylyl cyclase. J. Biol. Chem. 274, 7599–7602 (1999)

    Article  CAS  Google Scholar 

  72. S.R. Sprang, G Protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639–678 (1997)

    Article  CAS  Google Scholar 

  73. L. De Vries, B. Zheng, T. Fischer, E. Elenko, M.G. Farquhar, The regulator of G protein signaling family. Annu. Rev. Pharmacol. Toxicol. 40, 235–271 (2000)

    Article  Google Scholar 

  74. D.G. Lambright, J.P. Noel, H.E. Hamm, P.B. Sigler, Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994)

    Article  CAS  Google Scholar 

  75. A. Checa, A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue Cell 32, 405–416 (2000). https://doi.org/10.1054/tice.2000.0129

    Article  CAS  Google Scholar 

  76. F.-H. Chang, H. Bourne, Cholera toxin induces cAMP-independent degradation of Gs. J. Biol. Chem. 264, 5352–5357 (1989)

    CAS  Google Scholar 

  77. L. Hessle et al., Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl. Acad. Sci. 99, 9445–9449 (2002)

    Article  CAS  Google Scholar 

  78. J. Guicheux et al., Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J. Bone Miner. Res. 18, 2060–2068 (2003)

    Article  CAS  Google Scholar 

  79. J. Sondek, A. Bohm, D. Lambright, H. Hamm, P. Sigler, Crystal structure of a G-protein bg dimer at 2.1 AĘ resolution. Nature 379 (1996)

    Article  CAS  Google Scholar 

  80. A. Ito, T. Satoh, Y. Kaziro, H. Itoh, G protein βγ subunit activates Ras, Raf, and MAP kinase in HEK 293 cells. FEBS Lett. 368, 183–187 (1995)

    Article  CAS  Google Scholar 

  81. T. Ivanina, Y. Blumenstein, E. Shistik, R. Barzilai, N. Dascal, Modulation of L-type Ca2+ channels by Gβγ and calmodulin via interactions with N and C termini of α1C. J. Biol. Chem. 275, 39846–39854 (2000)

    Article  CAS  Google Scholar 

  82. M. Kondo, In vitro effect of chlorpromazine on the mineralization of tooth germ in mice--comparison with that of retinoic acid and HEBP. Nihon Yakurigaku Zasshi. 97, 85–95 (1991)

    Article  CAS  Google Scholar 

  83. M. Zhao, M. He, X. Huang, Q. Wang, A homeodomain transcription factor gene, PfMSX, activates expression of Pif gene in the pearl oyster Pinctada fucata. PLoS One 9, e103830 (2014)

    Article  Google Scholar 

  84. W. Herr et al., The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2 and Caenorhabditis elegans unc-86 gene products. Genes Dev. 2, 1513–1516 (1988)

    Article  CAS  Google Scholar 

  85. D.A. Gold, R.D. Gates, D.K. Jacobs, The early expansion and evolutionary dynamics of POU class genes. Mol. Biol. Evol. 31, 3136–3147 (2014)

    Article  CAS  Google Scholar 

  86. D. Tantin, Oct transcription factors in development and stem cells: insights and mechanisms. Development 140, 2857–2866 (2013)

    Article  CAS  Google Scholar 

  87. B. Andersen, M.G. Rosenfeld, POU domain factors in the neuroendocrine system: lessons from developmental biology provide insights into human disease. Endocr. Rev. 22, 2–35 (2001)

    CAS  Google Scholar 

  88. S. Raft, T.M. Coate, M.W. Kelley, E.B. Crenshaw III, D.K. Wu, Pou3f4-mediated regulation of ephrin-B2 controls temporal bone development in the mouse. PLoS One 9, e109043 (2014)

    Article  Google Scholar 

  89. J.D. Klemm, M.A. Rould, R. Aurora, W. Herr, C.O. Pabo, Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77, 21–32 (1994)

    Article  CAS  Google Scholar 

  90. W. Herr, M.A. Cleary, The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev. 9, 1679–1693 (1995)

    Article  CAS  Google Scholar 

  91. T. Curran, B.R. Franza, Fos and Jun: the AP-1 connection. Cell 55, 395–397 (1988)

    Article  CAS  Google Scholar 

  92. J. Hess, P. Angel, M. Schorpp-Kistner, AP-1 subunits: quarrel and harmony among siblings. J. Cell Sci. 117, 5965–5973 (2004)

    Article  CAS  Google Scholar 

  93. J.-P. David, K. Sabapathy, O. Hoffmann, M.H. Idarraga, E.F. Wagner, JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and-independent mechanisms. J. Cell Sci. 115, 4317–4325 (2002)

    Article  CAS  Google Scholar 

  94. Y.-H. Zhang, A. Heulsmann, M.M. Tondravi, A. Mukherjee, Y. Abu-Amer, Tumor necrosis factor-α (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J. Biol. Chem. 276, 563–568 (2001)

    Article  CAS  Google Scholar 

  95. L. Bakiri et al., Role of heterodimerization of c-Fos and Fra1 proteins in osteoclast differentiation. Bone 40, 867–875 (2007)

    Article  CAS  Google Scholar 

  96. T. Miyashita, A. Takami, R. Takagi, Molecular cloning and characterization of the 5′-flanking regulatory region of the carbonic anhydrase nacrein gene of the pearl oyster Pinctada fucata and its expression. Biochem. Genet. 50, 673–683 (2012)

    Article  CAS  Google Scholar 

  97. X. Zhao et al., Identification of genes potentially related to biomineralization and immunity by transcriptome analysis of pearl sac in pearl oyster Pinctada martensii. Mar. Biotechnol. 14, 730–739 (2012)

    Article  CAS  Google Scholar 

  98. S. Gordon, G. Akopyan, H. Garban, B. Bonavida, Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 25, 1125 (2006)

    Article  CAS  Google Scholar 

  99. Z. Deng, P. Cao, M.M. Wan, G. Sui, Yin Yang 1: a multifaceted protein beyond a transcription factor. Transcription 1, 81–84 (2010)

    Article  Google Scholar 

  100. F.B. Riquet et al., YY1 is a positive regulator of transcription of theCol1a1 gene. J. Biol. Chem. 276, 38665–38672 (2001)

    Article  CAS  Google Scholar 

  101. T. Aoyama et al., Histone modifiers, YY1 and p300, regulate the expression of cartilage-specific gene, chondromodulin-I, in mesenchymal stem cells. J. Biol. Chem. 285, 29842–29850 (2010)

    Article  CAS  Google Scholar 

  102. H.M. Jeong, Y.H. Choi, S.H. Lee, K.Y. Lee, YY1 represses the transcriptional activity of Runx2 in C2C12 cells. Mol. Cell. Endocrinol. 383, 103–110 (2014)

    Article  CAS  Google Scholar 

  103. M. Yao, G. Niu, Z. Sheng, Z. Wang, J. Fei, Identification of a smad4/yy1-recognizedand bmp2-responsive transcriptional regulatorymodule in the promoter of mouse gaba transporter subtype i (gat1) gene. J. Neurosci. 30, 4062–4071 (2010)

    Article  CAS  Google Scholar 

  104. F. Romeo et al., Negative transcriptional regulation of the human periostin gene by YingYang-1 transcription factor. Gene 487, 129–134 (2011)

    Article  CAS  Google Scholar 

  105. J.T. Kadonaga, K.R. Carner, F.R. Masiarz, R. Tjian, Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51, 1079–1090 (1987)

    Article  CAS  Google Scholar 

  106. S.M. Bell et al., Sp8 is crucial for limb outgrowth and neuropore closure. Proc. Natl. Acad. Sci. 100, 12195–12200 (2003)

    Article  CAS  Google Scholar 

  107. N.D. Schaeper, N.-M. Prpic, E.A. Wimmer, A conserved function of the zinc finger transcription factor Sp8/9 in allometric appendage growth in the milkweed bug Oncopeltus fasciatus. Dev. Genes Evol. 219, 427 (2009)

    Article  CAS  Google Scholar 

  108. T. Takeuchi, I. Sarashina, M. Iijima, K. Endo, In vitro regulation of CaCO 3 crystal polymorphism by the highly acidic molluscan shell protein Aspein. FEBS Lett. 582, 591–596 (2008)

    Article  CAS  Google Scholar 

  109. T. Samata et al., A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett. 462, 225–229 (1999)

    Article  CAS  Google Scholar 

  110. M. Suzuki et al., An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325, 1388–1390 (2009). https://doi.org/10.1126/science.1173793

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary Table 6.1

Supplementary Table 6.1

Chapter

Primer name

Primer sequence

6.3.2

5′-GSP1

TTATGGGGGTGGGGGTCGTATGGTGTGT

 

5′-GSP2

TCTTCTCATTTGTGCTGCTCTCC

 

3′-GSP

GCTAAAGGTGGAGATGAGGTGTT

 

sense

AACAACACTGGAAAGCCCAGACT

 

antisense

ATGCCATTGAGATGAGGGGGAAT

 

RT-FP

AGCAGCACAAATGAGAAGAA

 

RT-RP

TCCCAAATAGTATCACCAGAGC

6.3.3

5RP

CCGACAAAGGTGCGTAGGTGATGTGATT

 

3RP

CCTGGAGAAGAAGATTGGGTGG

 

FLGSPF

GGCACAATTTAGGTGGAACGATCA

 

FLGSPR

GCTTTCTCTCTCTCTCTCTCTCATC

 

EPF

CCGGAATTCGGATGGCAGTCAATAGTAAAG

 

EPR

CCGCTCGAGCTATCAGGTATTGTCTAACGGTG

 

RTGSPF

AAGCAGTAGTAATCCTGGTAG

 

RTGSPR

GTGTATTCGTCTTGTTCCCT

6.3.4

Nacrein-F

GGGGTACCTGAGTATCGACGAGAAACGCTTA

 

Nacrein-R

CCCAAGCTTCAGTCAAATGAAGATACATCACC

 

Rel-exp-F

GCGAGCGAGCGGTGACTTA

 

Rel-exp-R

GCACAGGCGCACACATACG

 

Sense-Rel

CATCCCCGGGGAGAGCAGCAC

 

Antisense-Rel

GTGCTGCTCTCCCCGGGATG

 

Nacrein-RT-F

GGCTTTGGCGACGAACCGGA

 

Nacrein-RT-R

ACACGGGGGAGTGGTCAGGG

 

Rel-RT-F

CTCGAGTGAAAGCTTCAACA

 

Rel-RT-R

CGAGCTATACGAGCACGCAGC

 

actin-RT-F

CTCCTCACTGAAGCCCCCCTCA

 

actin-RT-R

ATGGCTGGAATAGGGATTCTGG

 

KBWTL-5

GATCACTGCAACAGGGTCTGGTTGGAGATCCCCTCCCTTCTTGTAAGA

  

AGTTGAGGGGACTTTCCCAGGC

6.4.2.1

AR1

GGSACDGGVTCCTGGACNCAG

 

AR2

GAGCCATGTAACGTTTGGTTCC

 

AR5R2

CTTTGGAGATAATCATATAATGACCCG

 

AR3R1

TTGTTACGTCACGACTCGATCCTGGG

 

AR3R2

CGGAAAGTGGAAAAATAGATTACGG

 

ALR-cf1

TATCAACGCAGAGTACGCGGGGAG

 

ALR-cf2

CTGAGCTTCAAATTCAGTACCGTGG

 

AR3

CGAGGTGTAGGGTGTTTTGTGTTC

 

AR4

TAGGTTTTCCTGGCTCTCTTGTCG

 

SB1

TATTGAAGCACCAGTGTTGCCTCC

 

SB2

TCTAAAGGTGGGCTTGGTGAAACG

 

RTREL1

AGCAGCACAAATGAGAAGAA

 

RTREL2

TCCCAAATAGTATCACCAGAGC

 

RTIPF

AAGCAGTAGTAATCCTGGTAG

 

RTIPR

GTGTATTCGTCTTGTTCCCT

6.4.2.2

BMPR1B-GSP1

TACAGTAATCCTCGTCATCACAGCAC

 

BMPR1B-NGSP1

GAAGTTGTTGTATTGCTGATCTGGGATTAGC

 

BAMBI-GSP1

GCAATAGGGCCTCCATAAACTGTCAACC

 

BAMBI-NGSP1

TCCATAAACTGTCAACCCCCTCGTCCC

 

RT-PfACTIN-F

TACCGCCGCGTCATCATCAT

 

RT-PfACTIN-R

TGCCTCGGGACATCTGAACC

 

RT-PfBAMBI-F

ACTGTACAAGGAAGGCGTGTCAC

 

RT-PfBAMBI-R

GAGCTGGCATTTGTTTGGACGTG

 

RT-PfBMPR1B-F

GCACATAACACACGGCAAGGAAC

 

RT-PfBMPR1B-R

TCTGCTTGTCGGTAGGCTTCAAA

 

RT-KRMP-F

GAATGAAGTTCGCCGCTGTT

 

RT-KRMP-R

TTCCAATCCCARGGRTGACA

 

RT-PRISMALIN14-F

AAAGAAATACTTAACTGGTGCTA

 

RT-PRISMALIN14-R

CATGAGCAGCCCGGGTC

 

RT-PIF-F

TGCTGCCATCACGTGAGTATG

 

RT-PIF-R

GACTTCCCTTTCTCACACTTCCA

 

RT-MSI60-F

GAACAATGACTGGAATGACA

 

RT-MSI60-R

GGAAAGGTATCCAATAACAAC

 

ISH-BAMBI-F

GAGAAGAGGTGCTACTGC

 

ISH-BAMBI-R

GCTGGATTCTGCTTCTCG

 

ISH-BMPR1B-F

GAGTGCTGTGATGACGAGGATTAC

 

ISH-BMPR1B-R

TTGATTCACTTATATATCGCACTGC

 

RNAi-BAMBI-F

GCGTAATACGACTCACTATAGGGAGATGCGATGTTGTAAAGAGGA

 

RNAi-BAMBI-R

GCGTAATACGACTCACTATAGGGAGATTTCACGACGGATTTGTAT

 

RNAi-BMPR1B-F

GCGTAATACGACTCACTATAGGGAGACTGGCGACTCAATGTCTCAA

 

RNAi-BMPR1B-R

GCGTAATACGACTCACTATAGGGAGACTGGCATTGGTGTTGTTGAC

 

BAMBI-EcoRI

CGGAATTCATGGAGGCCCTATTGCTTC

 

BAMBI-PstI

AACTGCAGCTATACAGAAGCCACCAAGTC

 

BMPR1B-EcoRI

CGGAATTCATGGCAGACCTCTGCTGG

 

BMPR1B-PstI

AACTGCAGCTAGCTTTCTCCGGGTTTTATGAC

 

BMPR1B-BamHI

CGGGATCCCTAGCTTTCTCCGGGTTTTATGAC

 

SMAD1/5/8-ClaI

CCATCGATATGAGTTCACCCATCTCC

 

SMAD1/5/8-BamHI

CGGGATCCTCATGATACAGATGAAATTGGG

 

BMP2-ClaI

CCATCGATATGATTTACGGATTTGGACATTACC

 

BMP2-BamHI

CGGGATCCCTACCGACATCCGCATCC

 

SMAD4-EcoRI

CGGAATTCATGTTTCGGTCTAAAAGATCTACCCTC

 

SMAD4-BamHI

CGGGATCCTCACCTGTGGACGTTCAATAAAATTTC

6.4.4.1

SD5-1

GCAAACTCCTGATTGTTAAATATC

 

SD5-2

GCATGAAATGGTTCTCCAACACG

 

SD3-1

GGTGCTCGATAGCTTACTATGAGC

 

SD3-2

CAGTCTGCAAAATACCCCCAGG

 

Smad-cf1

AATCGTCGTTTTGTTCTCTTCTAG

 

Smad-cf2

CGGTATCAGTCAATATCACACAG

 

SB1

TATTGAAGCACCAGTGTTGCCTCC

 

SB2

TCTAAAGGTGGGCTTGGTGAAACG

 

SI1

TTCCCCATTTACTCCACCCATC

 

SI2

GCAACACTGGTGCTTCAATACGA

 

Pf-engrailed-ES1

CGGCATTCTCTAACGATCAGC

 

Pf-engrailed-ES2

CCATGAGATGTAACGCTAACAAG

 

Pf-Smad3-SB1

TTCCCCATTTACTCCACCCATC

 

Pf-Smad3-SB2

TCGTATTGAAGCACCAGTGTTGC

 

Pf-BMP2-BMP2F

GCGGTCGAAGAACTAAAA

 

Pf-BMP2-BMP2R

ATCCGCATCCTTCAACAA

6.5

BCAT-3F1

CGAGGAATGAAGGGGTTGC

 

BCAT-3F2

TCACGGTAGTCAGGGAAGCAT

 

BCAT-5R1

GGGTGGAGGGGATGGGTAC

 

BCAT-5R2

CGGCGTGTATGCCTGTTCT

 

BCAT-5

ACAAATAAGGAACCACCAAGATG

 

BCAT-3

CATGGTTACAGAAGTGGAATATCC

 

DVL-3F1

CCCCTCAGCCTGGGTAGCA

 

DVL-3F2

GAAAGACTCCGCTGAAACTCC

 

DVL-5R1

CCAGCACTTGGCAACGACT

 

DVL-5R2

TGATGTGCGGTTTGTGGTGT

 

DVL-5

AATCGGACGCCATTTTACATCA

 

DVL-3

TTGCGGTACTGCGTTGAGGT

 

TCF-3F1

GGGAATCCACCAGAAGACAAA

 

TCF-3F2

AAAGAAGTGCGAGCCCAAGT

 

TCF-5R1

TGGGCTCGCACTTCTTTCAT

 

TCF-5R2

ACATCAAGCCTGGGTGGG

 

TCF-5

TTGTTTTTAACTTTGACAATGCCG

 

TCF-3

AATGTCTACTACCGTTGCCATGTTC

 

BCAT-F

AACCATTCTACAAGCAGGCGATA

 

BCAT-R

TCCCTCAGTGGTGCGTGGTTAG

 

DVL-F

TATTAGCAGGGCTTCGTCATTCA

 

DVL-R

CCCGTCTCCTCCTTTGTTACTCT

 

TCF-F

TGAAGGCGAGGAAGAGCAGA

 

TCF-R

CCCAAGGGAGAAGATCCATTAGG

 

actin-F

CTCCTCACTGAAGCCCCCCTCA

 

actin-R

ATGGCTGGAATAGGGATTCTGG

 

18S-F

AGGACCTCGGTTCTATTTTGTTGG

 

18S-R

TTTCACCTCTAACACCGCAATACC

6.6.2

5AGSP1

GTACA GGGGGATTCAGTGTGCTCATGG

 

3AGSP2

CATGAGCACACTGAATCCCCCTGTACC

 

AeF

CGCGGATCCATGGGATGTTTTAAGCCTAAGGGAG

 

AeR

CCGCTCGAGCTATCACAGAAGCTCGTATTGTCGCAG

6.6.3

GSP3

CCTGTAAATGCTGTCGTCTGCTGACCT

6.7.2

POU3-3F1

GCCATCCGCCCAAGAAAT

 

POU3-3F2

ACCAAATGGAGAACTGCTGATG

 

POU3-5R1

CCTGTGGTCGAGTCCGCTTCTTCAA

 

POU3-5R2

CCAGGAATCACCGCCCGTAATCG

 

POU3F4-5

AATAAGCCAGGACCAAGTAAAGG

 

POU3F4-3

CATTCCCAACACCTTACTTTCTG

 

AS-1F

GGGATAGCCATTCTTATGTGTCT

 

AS-1R1

AGCATCACTGGGCTCCGATA

 

AS-1R2

ACTACAGCACCAGCGGCAG

 

P14-1F

GGGACACAGTCCCAAAGAAATAC

 

P14-1R1

AACAAACATGAGCAGCCCG

 

P14-1R2

GATTCGCTGGATTCCGCTA

 

AS-GWR1

TGACATCAGAAACGAATAAACAGGA

 

AS-GWR2

TATCAGCATTTCCTTGAGCAGCCAT

 

AS-GWR3

ACAATACCAAACAAACGAAATCACT

 

AS-GWR4

GTCCGTTACCGAAAGCGAAAGA

 

AS-GWR5

TAACTGACAAGGATCGGGCTAG

 

AS-GWR6

CTAGAGCGTGCTTTGTGGAACT

 

ASP-F

TCGGATGCCCTGTAGAGT

 

ASP-R

AATCACTTACAAGTAACGCTTA

 

P14-GWR1

CACAAGCAGCTAAGGCAAGGA

 

P14-GWR2

GAATGGAAATGTAGCACCTGTTGAT

 

P14-GWR3

GCTTGCCGAAAATCTTTTACGA

 

P14P-F

AAGGCTTCTGCGGGGTTT

 

P14P-R

TCGAACTCCGGTGCCAGAG

 

POU2F1-F

CTCCGATTTCCGCCCCTC

 

POU2F1-R

GCTAGAATGATTTGTCCGTTAGTCG

 

POU3F4-F

AGATGTGGGACTTGCTTTGGG

 

POU3F4-R

TTCTTTCGCTTTCTACCTTGTGC

 

AS-F

GAAGGGGATAGCCATTCTTATGTG

 

AS-R

GCATCACTGGGCTCCGATACTA

 

P14-F

CTATTTCCCGCGTTTCTCCTATC

 

P14-R

TCCTCCGTAACCACCGTTAAATC

 

actin-F

CTCCTCACTGAAGCCCCCCTCA

 

actin-R

ATGGCTGGAATAGGGATTCTGG

 

18S-F

AGGACCTCGGTTCTATTTTGTTGG

 

18S-R

TTTCACCTCTAACACCGCAATACC

 

dsPOU3F4- 1F

GGATCCTAATACGACTCACTATAGGTTGGCGGA CCCTACTCA

 

dsPOU3F4- 1R

CTTCTTTCGCTTTCTACCTT

 

dsPOU3F4- 2F

TTGGCGGACCCTACTCA

 

dsPOU3F4- 2R

GGATCCTAATACGACTCACTATAGGCTTCTTTCG CTTTCTACCTT

 

dsGFP-1F

GGATCCTAATACGACTCACTATAGGATGGTGAG CAAGGGCGA

 

dsGFP-1R

ACTTGTACAGCTCGTCCATG

 

dsGFP-2F

ATGGTGAGCAAGGGCGA

 

dsGFP-2R

GGATCCTAATACGACTCACTATAGGACTTGTAC AGCTCGTCCATG

 

P14B1F

GTCAAAATTGCAAATTTAATTAGATTCAAAAAC GCACGG

 

P14B1R

CCGTGCGTTTTTGAATCTAATTAAATTTGCAATT TTGAC

 

P14B1WTF

GTCAAAATTGCAAATGGAAGGAGAGGCAAAA ACGCACGG

 

P14B1WTR

CCGTGCGTTTTTGCCTCTCCTTCCATTTGCAATT TTGAC

 

P14B2F

GATTAGACTATAATTAATTTTAATTATTCTGTGCA ATAT

 

P14B2R

ATATTGCACAGAATAATTAAAATTAATTATAGTC TAATC

 

P14B2WTF

GATTAGACTATGGTTGGTTTTAATGGTTCTGTGC AATAT

 

P14B2WTR

ATATTGCACAGAACCATTAAAACCAACCATAGT CTAATC

 

ASB1F

TTGTCAGTTATTAAAATACCTATAACGTATTTTA ATCACAATA

 

ASB1R

TATTGTGATTAAAATACGTTATAGGTATTTTAATA ACTGACAA

 

ASB2F

TTAATCACAATATGTATGCATGATTGTTCAAAAA ATTGTGATG

 

ASB2R

CATCACAATTTTTTGAACAATCATGCATACATAT TGTGATTAA

 

ASB3F

AAAATTGTGATGTTTCCATAAATTATAGGTACTG AACCTCAAT

 

ASB3R

ATTGAGGTTCAGTACCTATAATTTATGGAAACAT CACAATTTT

 

P14B1F

GTCAAAATTGCAAATTTAATTAGATTCAAAAAC GCACGG

 

P14B1R

CCGTGCGTTTTTGAATCTAATTAAATTTGCAATT TTGAC

 

P14B1WTF

GTCAAAATTGCAAATGGAAGGAGAGGCAAAA ACGCACGG

 

P14B1WTR

CCGTGCGTTTTTGCCTCTCCTTCCATTTGCAATT TTGAC

 

P14B2F

GATTAGACTATAATTAATTTTAATTATTCTGTGCA ATAT

 

P14B2R

ATATTGCACAGAATAATTAAAATTAATTATAGTC TAATC

 

P14B2WTF

GATTAGACTATGGTTGGTTTTAATGGTTCTGTGC AATAT

 

P14B2WTR

ATATTGCACAGAACCATTAAAACCAACCATAGT CTAATC

 

ASB1F

TTGTCAGTTATTAAAATACCTATAACGTATTTTA ATCACAATA

 

ASB1R

TATTGTGATTAAAATACGTTATAGGTATTTTAATA ACTGACAA

 

ASB2F

TTAATCACAATATGTATGCATGATTGTTCAAAAA ATTGTGATG

 

ASB2R

CATCACAATTTTTTGAACAATCATGCATACATAT TGTGATTAA

 

ASB3F

AAAATTGTGATGTTTCCATAAATTATAGGTACTG AACCTCAAT

 

ASB3R

ATTGAGGTTCAGTACCTATAATTTATGGAAACAT CACAATTTT

6.7.3

c-Jun186-f

TCTCCKCACGTKGGKCTKCTCAARC

 

c-Jun873-f

CAAGTAGCWGAGCTCAARCARAAAG

 

c-Jun35-r

TCATCGTAGAAAGTAGTTTCCAT

 

c-Jun489-r

GAGTGATGAAATGACGAGTTAGAATCATC

 

c-Jun1152-f

AATGGCAATATTATGTCTCTTGTTAGCAC

 

cjun-qf

CGGTGGCAAAACAAAACAGC

 

cjun-qr

TGGGGCACGGGTAAAACTT

6.7.4

yy10-f

GGCGACACCCTCTACATTGCC

 

yy95-f

CGACAGAAATCAAACATGGCGTC

 

yy1391-r

CCTCGTATGTGTATCCTATTAACATGGC

 

yy833-3f

TAGCAGAATTTGCTAGTCTCCAGCC

 

yy1098-3f

TTTTCAGTGTACGTTTGAGGGATGC

 

yy1251-3f

TATACTGACACATGCAAAAGCAAATAGC

 

yy776-5r

AATTCCCCCTGGGGGAAGTTTTTTCC

 

yy545-5r

CTCCCAAAGTTCCAGCCCCGAGAAG

 

yy238-5r

TGGAAGCGGTTGTAACGCTATCATAGGTTG

 

yy92-5r

CGACGCCATGTTTGATTTCTGTCGAAG

 

yy-confirmf

AGCAGTGGTATCAACGCAGAG

 

yy-confirmr

CCGATTCCCAAAACAGAGTAA

 

yy-ef

CCATCGATATGGCGTCGGTTATCGGTTC

 

yy-er

AACCTCGAGCTATGACTCCTCGTATGTGTATCCTATTAAC

 

yy-sf

ATCCCAAACAGTTAGCAGA

 

yy-sr

CTTACCGCATCCCTCAA

 

β-actin-qf

CTCCTCACTGAAGCCCCCCTCA

 

β-actin-qr

ATGGCTGGAATAGGGATTCTGG

 

yyqf

AGAGGAAGATGCGTCAGTTTCAG

 

yyqr

GTTTGGGATCACTAAGGTCAAGG

 

P39-qf

CTGGAATGAGAGGATATG

 

P39-qr

TGCTGCTGTAATAACTATA

 

ACCBP-qf

GACATGGAACAAAGATGGTGGA

 

ACCBP-qr

CTGTGGCTGGAATGGTTGG

 

Pif-qf

TGCTGCCATCACGTGAGTATG

 

Pif-qr

GACTTCCCTTTCTCACACTTCCA

 

Aspein-qf

TGATAGTGAAGACGATGA

 

Aspein-qr

TGTCATCATCATCATCATC

6.7.5

sp157-3f

CTAGCCGCTCAATGTAACAAGATC

 

sp1311-3f

TACSTGGCAGACCATCCAGCT

 

sp1324-3r

TGGATGGTCTGCCASGTAACTTG

 

sp1318-3r

CASGTAACTTGGCCATTWGGRCC

 

sp180-5r

GATCTTGTTACATTGAGCGGCTAGCATTG

 

sp1705-5r

CATTGAGCGGCTAGCATTGCTAATGG

 

sp-85r

AAGGATGGAACCCCTTCCCTACA

 

sp-43r

GCGGGCTTTTGTTTGTGATCTTG

 

spqf

CTCACGGCATCAAGTCTGAAAT

 

spqr

CGGACTGCTGAACGGGTAAT

 

Pif-qf

TGCTGCCATCACGTGAGTATG

 

Pif-qr

GACTTCCCTTTCTCACACTTCCA

 

aspein-qf

TGATAGTGAAGACGATGA

 

aspein-qr

TGTCATCATCATCATCATC

 

Pearlin-qf

TACTCATACTGCTGGATA

 

Pearlin-qr

TATCATCATCGGTGTAAC

 

KRMP-ef1

AAAGGTACCGTACATTTTTGACATATTTTTCACACTCTTTG

 

KRMP-er1

AACCTCGAGTCTGAACCTGTAGAAAAATATTATTCATTAGATTC

 

pearlin-ef

AAAGGTACCAAAATTACTGTGTCCAAAGG

 

pearlin-er

AAACTCGAGAGACAAAAGATATTTCTCTTTAACC

 

p39-ef

AAAGGTACCCCGTACTTCATCATTGTAGCTCCG

 

p39-er

AACCTCGAGGACAATTTTGTAACCTGAAACAAAG

 

spef

AAAGGTACCATGCTAGCCGCTCAATGTAACAAGA

 

sper

GGATCGATTCACTTCATAGCACGGTTATCCCTG

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, R., Xie, L., Yan, Z. (2019). Molecular Regulation Mechanism of Biomineralization of Pinctada fucata . In: Biomineralization Mechanism of the Pearl Oyster, Pinctada fucata. Springer, Singapore. https://doi.org/10.1007/978-981-13-1459-9_6

Download citation

Publish with us

Policies and ethics