Skip to main content

The Study on Enzymes Related to Biomineralization of Pinctada fucata

  • Chapter
  • First Online:
Biomineralization Mechanism of the Pearl Oyster, Pinctada fucata

Abstract

As an efficient, economical, and clean catalyst, enzymes are expected to have novel features. Efforts have been made to screen new enzymes in marine organisms. In our recent studies, we explored the basic characteristics and functions of alkaline phosphatases, acid phosphatases, carbonic anhydrases, tyrosinase, and a novel astacin-like metalloproteinase in Pinctada fucata.

An alkaline phosphatase (ALP), an acid phosphatase (ACP) and two isoenzymes (AcPase I and II), a novel carbonic anhydrase (CA), tyrosinase, and a novel astacin-like metalloproteinase were purified or isolated from Pinctada fucata. The specific activity of the enzymes and the optimum pH and temperature were detected. The effects of HPO4 2− production and the product-analog WO4 3−, MoO4 3−, and AsO4 3− as well as some metal ions on the related enzymes were also determined. The effect of inhibitors on the enzyme activity was also examined. Besides, the tissue distribution of CA and tyrosinase was analyzed by in situ hybridization and RT-PCR. The effects of AcPase I on CaCO3 crystal formation were studied in vitro. Taken together, these results revealed the important functions and features of enzymes in Pinctada fucata, which would have important roles to further understand the enzymes in peal oyster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Wahler, J.L. Reymond, Novel methods for biocatalyst screening. Curr. Opin. Chem. Biol. 5, 152–158 (2001)

    Article  CAS  Google Scholar 

  2. E.E. Kim, H.W. Wyckoff, Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J. Mol. Biol. 218, 449–464 (1991)

    Article  CAS  Google Scholar 

  3. S.E. Halford, M.J. Schlesinger, Mutationally altered rate constants in the mechanism of alkaline phosphatase. Biochem. J. 141, 845–852 (1974)

    Article  CAS  Google Scholar 

  4. J. Ahlers, The mechanism of hydrolysis of beta-glycerophosphate by kidney alkaline phosphatase. Biochem. J. 149, 535–546 (1975)

    Article  CAS  Google Scholar 

  5. J.E. Coleman, Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21, 441–483 (1992). https://doi.org/10.1146/annurev.bb.21.060192.002301

    Article  CAS  Google Scholar 

  6. T.A. Hamilton, S.Z. Gornicki, H.H. Sussman, Alkaline phosphates from human milk. Comparison with isoenzymes from placenta and liver. Biochem. J. 177, 197–201 (1979)

    Article  CAS  Google Scholar 

  7. B. Stec, K.M. Holtz, E.R. Kantrowitz, A revised mechanism for the alkaline phosphatase reaction involving three metal ions. J. Mol. Biol. 299, 1303–1311 (2000). https://doi.org/10.1006/jmbi.2000.3799

    Article  CAS  Google Scholar 

  8. K.M. Holtz, E.R. Kantrowitz, The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis. FEBS Lett. 462, 7–11 (1999)

    Article  CAS  Google Scholar 

  9. M.T. Mazorra, J.A. Rubio, J. Blasco, Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 131, 241–249 (2002)

    Article  CAS  Google Scholar 

  10. M.S. Reddy, K.V. Rao, Methylparathion-induced alterations in the acetylcholinesterase and phosphatases in a penaeid prawn, Metapenaeus monoceros. Bull. Environ. Contam. Toxicol. 45, 350–357 (1990)

    Article  CAS  Google Scholar 

  11. Q.X. Chen et al., Kinetics of inhibition of alkaline phosphatase from green crab (Scylla serrata) by N-bromosuccinimide. J. Protein Chem. 15, 345–350 (1996)

    Article  CAS  Google Scholar 

  12. M. de Backer et al., The 1.9 A crystal structure of heat-labile shrimp alkaline phosphatase. J. Mol. Biol. 318, 1265–1274 (2002)

    Article  Google Scholar 

  13. M.H. Le Du, T. Stigbrand, M.J. Taussig, A. Menez, E.A. Stura, Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity. J. Biol. Chem. 276, 9158–9165 (2001). https://doi.org/10.1074/jbc.M009250200

    Article  Google Scholar 

  14. I.W. Nilsen, K. Overbo, R.L. Olsen, Thermolabile alkaline phosphatase from Northern shrimp (Pandalus borealis): protein and cDNA sequence analyses. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 129, 853–861 (2001)

    Article  CAS  Google Scholar 

  15. H.E. Stubberud, T.G. Honsi, J. Stenersen, Purification and partial characterisation of tentatively classified acid phosphatase from the earthworm Eisenia veneta. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 126, 487–494 (2000)

    Article  CAS  Google Scholar 

  16. H. Janska, A. Kubicz, A. Szalewicz, J. Harazna, The high molecular weight and the low molecular weight acid phosphatases of the frog liver and their phosphotyrosine activity. Comp. Biochem. Physiol. B 90, 173–178 (1988)

    Article  CAS  Google Scholar 

  17. F. Panara, A. Angiolillo, R. Pascolini, Acid phosphatases from liver of Rana esculenta. Subcellular localization and partial characterization of multiple forms. Comp. Biochem. Physiol. B 93, 877–882 (1989)

    Article  CAS  Google Scholar 

  18. M.P. Cajaraville et al., The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci. Total Environ. 247, 295–311 (2000)

    Article  CAS  Google Scholar 

  19. I.L. Tsvetkov, A.P. Popov, A.S. Konichev, Acid phosphatase complex from the freshwater snail Viviparus viviparus L. under standard conditions and intoxication by cadmium ions. Biochemistry (Mosc) 68, 1327–1334 (2003)

    Article  CAS  Google Scholar 

  20. G. Jing, L. Li, Y. Li, L. Xie, R. Zhang, Purification and partial characterization of two acid phosphatase forms from pearl oyster (Pinctada fucata). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 143, 229–235 (2006). https://doi.org/10.1016/j.cbpb.2005.11.008

    Article  CAS  Google Scholar 

  21. G. Owen, Lysosomes, peroxisomes and bivalves. Sci. Prog. 60, 299–318 (1972)

    CAS  Google Scholar 

  22. C.M. Adema, W.P.W. Vanderknaap, T. Sminia, Molluscan hemocyte-mediated cytotoxicity – the role of reactive oxygen intermediates. Rev. Aquat. Sci. 4, 201–223 (1991)

    Google Scholar 

  23. S. Nicholson, Cardiac and branchial physiology associated with copper accumulation and detoxication in the mytilid mussel Perna viridis (L.). J. Exp. Mar. Biol. Ecol. 295, 157–171 (2003). https://doi.org/10.1016/s0022-0981(03)00292-2

    Article  CAS  Google Scholar 

  24. A.J. Bune, A.R. Hayman, M.J. Evans, T.M. Cox, Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disordered macrophage inflammatory responses and reduced clearance of the pathogen, Staphylococcus aureus. Immunology 102, 103–113 (2001)

    Article  CAS  Google Scholar 

  25. A.R. Hayman et al., Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 122, 3151–3162 (1996)

    CAS  Google Scholar 

  26. Y. Yokota, Purification and characterization of particulate acid-phosphatases from eggs of Mediterranean-sea urchins. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 84, 255–260 (1986). https://doi.org/10.1016/0305-0491(86)90073-8

    Article  Google Scholar 

  27. E.J. Houk, J.L. Hardy, Acid phosphatases of the mosquito Culex tarsalis coquillett. Comp. Biochem. Physiol. B 87, 773–782 (1987)

    Article  CAS  Google Scholar 

  28. P.W. Pappas, Acid phosphatase activity in the isolated brush border membrane of the tapeworm, Hymenolepis diminuta: partial characterization and differentiation from the alkaline phosphatase activity. J. Cell. Biochem. 37, 395–403 (1988). https://doi.org/10.1002/jcb.240370407

    Article  CAS  Google Scholar 

  29. M.I. Feigen, M.A. Johns, J.H. Postlethwait, R.R. Sederoff, Purification and characterization of acid phosphatase-1 from Drosophila melanogaster. J. Biol. Chem. 255, 10338–10343 (1980)

    CAS  Google Scholar 

  30. Y. Xia et al., Acid phosphatases in the haemolymph of the desert locust, Schistocerca gregaria, infected with the entomopathogenic fungus Metarhizium anisopliae. J. Insect Physiol. 46, 1249–1257 (2000). https://doi.org/10.1016/S0022-1910(00)00045-7

    Article  CAS  Google Scholar 

  31. G. Jing, Z. Yan, Y. Li, L. Xie, R. Zhang, Immunolocalization of an acid phosphatase from pearl oyster (Pinctada fucata) and its in vitro effects on calcium carbonate crystal formation. Mar. Biotechnol. (NY) 9, 650–659 (2007). https://doi.org/10.1007/s10126-007-9018-0

    Article  CAS  Google Scholar 

  32. K.M. Wilbur, N.G. Anderson, Carbonic anhydrase and growth in the oyster and busycon. Biol. Bull. 98, 19–24 (1950). https://doi.org/10.2307/1538594

    Article  CAS  Google Scholar 

  33. S.A. Nielsen, E. Frieden, Carbonic-anhydrase activity in molluscs. Comp. Biochem. Physiol. 41, 461–468 (1972). https://doi.org/10.1016/0305-0491(72)90107-1

    Article  CAS  Google Scholar 

  34. L. Duvail, J. Moal, M. Fouchereau-Peron, CGRP-like molecules and carbonic anhydrase activity during the growth of Pecten maximus. Comp. Biochem. Physiol. C 120, 475–480 (1998). https://doi.org/10.1016/S0742-8413(98)10068-3

    Article  CAS  Google Scholar 

  35. H. Miyamoto et al., A carbonic anhydrase from the nacreous layer in oyster pearls. P. Natl. Acad. Sci. USA 93, 9657–9660 (1996). https://doi.org/10.1073/pnas.93.18.9657

    Article  CAS  Google Scholar 

  36. R.P. Henry, S. Gehnrich, D. Weihrauch, D.W. Towle, Salinity-mediated carbonic anhydrase induction in the gills of the euryhaline green crab, Carcinus maenas. Comp. Biochem. Phys. A 136, 243–258 (2003). https://doi.org/10.1016/S1095-6433(03)00113-2

    Article  CAS  Google Scholar 

  37. M. Rousseau et al., Biomineralisation markers during a phase of active growth in Pinctada margaritifera. Comp. Biochem. Phys. A 135, 271–278 (2003). https://doi.org/10.1016/S1095-6433(03)00070-9

    Article  CAS  Google Scholar 

  38. H.S. Mason, Oxidases. Annu. Rev. Biochem. 34, 595–634 (1965). https://doi.org/10.1146/annurev.bi.34.070165.003115

    Article  CAS  Google Scholar 

  39. J.N. Rodriguezlopez, J. Tudela, R. Varon, F. Garciacarmona, F. Garciacanovas, Analysis of a kinetic-model for melanin biosynthesis pathway. J. Biol. Chem. 267, 3801–3810 (1992)

    CAS  Google Scholar 

  40. J.H. Waite, The phylogeny and chemical diversity of quinone-tanned glues and varnishes. Comp. Biochem. Physiol. B 97, 19–29 (1990)

    Article  CAS  Google Scholar 

  41. T.L. Hopkins, K.J. Kramer, Insect cuticle sclerotization. Annu. Rev. Entomol. 37, 273–302 (1992)

    Article  CAS  Google Scholar 

  42. H. Sugumaran, Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res. 15, 2–9 (2002). https://doi.org/10.1034/j.1600-0749.2002.00056.x

    Article  CAS  Google Scholar 

  43. T. Naraoka et al., Purification, characterization and molecular cloning of tyrosinase from the cephalopod mollusk, Illex argentinus. Eur. J. Biochem. 270, 4026–4038 (2003). https://doi.org/10.1046/j.1432-1033.2003.03795.x

    Article  CAS  Google Scholar 

  44. N.A. Ratcliffe, A.F. Rowley, S.W. Fitzgerald, C.P. Rhodes, Invertebrate immunity – basic concepts and recent advances. Int. Rev. Cytol. 97, 183–350 (1985)

    Article  CAS  Google Scholar 

  45. E. Vass, A.J. Nappi, Y. Carton, Alterations in the activities of tyrosinase, N-acetyltransferase, and tyrosine aminotransferase in immune reactive larvae of Drosophila-melanogaster. Dev. Comp. Immunol. 17, 109–118 (1993). https://doi.org/10.1016/0145-305x(93)90021-H

    Article  CAS  Google Scholar 

  46. R. Asokan, M. Arumugam, P. Mullainadhan, Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel – Perna viridis Linnaeus. Dev. Comp. Immunol. 21, 1–12 (1997). https://doi.org/10.1016/S0145-305x(97)00004-9

    Article  CAS  Google Scholar 

  47. K. Soderhall, L. Cerenius, Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23–28 (1998). https://doi.org/10.1016/S0952-7915(98)80026-5

    Article  CAS  Google Scholar 

  48. C.H. Brown, Some structural proteins of Mytilus-edulis. Q. J. Microsc. Sci. 93, 487–502 (1952)

    Google Scholar 

  49. J.H. Waite, M.L. Tanzer, The bioadhesive of Mytilus Byssus – a protein containing L-Dopa. Biochem. Bioph. Res. Co. 96, 1554–1561 (1980). https://doi.org/10.1016/0006-291x(80)91351-0

    Article  CAS  Google Scholar 

  50. F. Eshete, P.T. Loverde, Characteristics of phenol oxidase of Schistosoma-mansoni and its functional implications in eggshell synthesis. J. Parasitol. 79, 309–317 (1993). https://doi.org/10.2307/3283563

    Article  CAS  Google Scholar 

  51. G.X. Bai, J.F. Brown, C. Watson, T.P. Yoshino, Isolation and characterization of phenoloxidase from egg masses of the gastropod mollusc, Biomphalaria glabrata. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 118, 463–469 (1997). https://doi.org/10.1016/S0305-0491(97)00159-4

    Article  CAS  Google Scholar 

  52. G.M. Jones, A.S.M. Saleuddin, Cellular mechanisms of periostracum formation in Physa spp (Mollusca-Pulmonata). Can. J. Zool. 56, 2299–2311 (1978). https://doi.org/10.1139/z78-312

    Article  Google Scholar 

  53. A. Veis, Biomineralization – cell biology and mineral deposition – Simkiss, K, Wilbur, Km. Science. 247, 1129–1130 (1990). https://doi.org/10.1126/science.247.4946.1129

    Article  Google Scholar 

  54. H. Petit, W.L. Davis, R.G. Jones, H.K. Hagler, Morphological-studies on the calcification process in the fresh-water mussel Amblema. Tissue Cell 12, 13–28 (1980). https://doi.org/10.1016/0040-8166(80)90049-X

    Article  CAS  Google Scholar 

  55. A. Checa, A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue Cell 32, 405–416 (2000). https://doi.org/10.1054/tice.2000.0129

    Article  CAS  Google Scholar 

  56. R.S. Cong et al., Purification and characterization of phenoloxidase from clam Ruditapes philippinarum. Fish Shellfish Immun. 18, 61–70 (2005). https://doi.org/10.1016/j.fsi.2004.06.001

    Article  CAS  Google Scholar 

  57. L.P. Xie, Y.T. Wu, Y.P. Dai, Q. Li, R.Q. Zhang, A novel glycosylphosphatidylinositol-anchored alkaline phosphatase dwells in the hepatic duct of the pearl oyster, Pinctada fucata. Mar. Biotechnol. (NY) 9, 613–623 (2007). https://doi.org/10.1007/s10126-007-9015-3

    Article  CAS  Google Scholar 

  58. G. Geier, R. Zwilling, Cloning and characterization of a cDNA coding for Astacus embryonic astacin, a member of the astacin family of metalloproteases from the crayfish Astacus astacus. Eur. J. Biochem. 253, 796–803 (1998). https://doi.org/10.1046/j.1432-1327.1998.2530796.x

    Article  CAS  Google Scholar 

  59. M.Z. Kounnas, R.L. Wolz, C.M. Gorbea, J.S. Bond, Meprin-a and Meprin-B – cell-surface endopeptidases of the mouse kidney. J. Biol. Chem. 266, 17350–17357 (1991)

    CAS  Google Scholar 

  60. J.M. Wozney et al., Novel regulators of bone-formation – molecular clones and activities. Science 242, 1528–1534 (1988). https://doi.org/10.1126/science.3201241

    Article  CAS  Google Scholar 

  61. G.F.Z. da Silva, R.L. Reuille, L.J. Ming, B.T. Livingston, Overexpression and mechanistic characterization of blastula protease 10, a metalloprotease involved in sea urchin embryogenesis and development. J. Biol. Chem. 281, 10737–10744 (2006). https://doi.org/10.1074/jbc.M510707200

    Article  CAS  Google Scholar 

  62. M.J. Shimell, E.L. Ferguson, S.R. Childs, M.B. Oconnor, The Drosophila dorsal-ventral patterning gene tolloid is related to human bone morphogenetic protein-1. Cell 67, 469–481 (1991). https://doi.org/10.1016/0092-8674(91)90522-Z

    Article  CAS  Google Scholar 

  63. J.L. Quinones, R. Rosa, D.L. Ruiz, J.E. Garcia-Arraras, Extracellular matrix remodeling and metalloproteinase involvement during intestine regeneration in the sea cucumber Holothuria glaberrima. Dev. Biol. 250, 181–197 (2002). https://doi.org/10.1006/dbio.2002.0778

    Article  CAS  Google Scholar 

  64. A.L. Williamson et al., Ancylostoma caninum MTP-1, an astacin-like metalloprotease secreted by infective hookworm larvae, is involved in tissue migration. Infect. Immun. 74, 961–967 (2006). https://doi.org/10.1128/Iai.74.2.961-967.2006

    Article  CAS  Google Scholar 

  65. E. Dumermuth, J.A. Eldering, J. Grunberg, W. Jiang, E.E. Sterchi, Cloning of the PABA peptide hydrolase alpha subunit (PPH alpha) from human small intestine and its expression in COS-1 cells. FEBS Lett. 335, 367–375 (1993)

    Article  CAS  Google Scholar 

  66. S. Yasumasu et al., Isolation of cDNAs for LCE and HCE, two constituent proteases of the hatching enzyme of Oryzias latipes, and concurrent expression of their mRNAs during development. Dev. Biol. 153, 250–258 (1992)

    Article  CAS  Google Scholar 

  67. S. Yasumasu et al., Different exon-intron organizations of the genes for two astacin-like proteases, high choriolytic enzyme (choriolysin H) and low choriolytic enzyme (choriolysin L), the constituents of the fish hatching enzyme. Eur. J. Biochem. 237, 752–758 (1996)

    Article  CAS  Google Scholar 

  68. S. Yasumasu, K.M. Mao, F. Sultana, H. Sakaguchi, N. Yoshizaki, Cloning of a quail homologue of hatching enzyme: its conserved function and additional function in egg envelope digestion. Dev. Genes Evol. 215, 489–498 (2005). https://doi.org/10.1007/s00427-005-0007-x

    Article  CAS  Google Scholar 

  69. F.H. Shen, Q.L. Feng, C.M. Wang, The modulation of collagen on crystal morphology of calcium carbonate. J. Cryst. Growth 242, 239–244 (2002). https://doi.org/10.1016/S0022-0248(02)01376-3

    Article  CAS  Google Scholar 

  70. A. Serpentini et al., Collagen study and regulation of the de novo synthesis by IGF-I in hemocytes from the gastropod mollusc, Haliotis tuberculata. J. Exp. Zool. 287, 275–284 (2000). https://doi.org/10.1002/1097-010x(20000901)287:4<275::Aid-Jez2>3.0.Co;2-8

    Article  CAS  Google Scholar 

  71. J.M. Poncet et al., In vitro synthesis of proteoglycans and collagen in primary cultures of mantle cells from the nacreous mollusk, Haliotis tuberculata: a new model for study of molluscan extracellular matrix. Mar. Biotechnol. 2, 387–398 (2000)

    CAS  Google Scholar 

  72. S. Blank et al., The nacre protein perlucin nucleates growth of calcium carbonate crystals. J. Microsc-Oxford 212, 280–291 (2003). https://doi.org/10.1111/j.1365-2818.2003.01263.x

    Article  CAS  Google Scholar 

  73. A.S. Mount, A.P. Wheeler, R.P. Paradkar, D. Snider, Hemocyte-mediated shell mineralization in the eastern oyster. Science 304, 297–300 (2004). https://doi.org/10.1126/science.1090506

    Article  CAS  Google Scholar 

  74. F.H. Wilt, Developmental biology meets materials science: morphogenesis of biomineralized structures. Dev. Biol. 280, 15–25 (2005). https://doi.org/10.1016/j.ydbio.2005.01.019

    Article  CAS  Google Scholar 

  75. J.D. Bendtsen, H. Nielsen, G. von Heijne, S. Brunak, Improved prediction of signal peptides: signalP 3.0. J. Mol. Biol. 340, 783–795 (2004). https://doi.org/10.1016/j.jmb.2004.05.028

    Article  CAS  Google Scholar 

  76. J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, D.G. Higgins, The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997). https://doi.org/10.1093/nar/25.24.4876

    Article  CAS  Google Scholar 

  77. W.Q. Huang et al., Immunohistochemical and in situ hybridization studies of gonadotropin releasing hormone (GnRH) and its receptor in rat digestive tract. Life Sci. 68, 1727–1734 (2001)

    Article  CAS  Google Scholar 

  78. R. Xiao et al., Purification and enzymatic characterization of alkaline phosphatase from Pinctada fucata. J. Mol. Catal. B-Enzym. 17, 65–74 (2002). https://doi.org/10.1016/S1381-1177(02)00007-3

    Article  CAS  Google Scholar 

  79. J.M. Lucas, L.W. Knapp, Biochemical characterization of purified carbonic anhydrase from the octocoral Leptogorgia virgulata. Mar. Biol. 126, 471–477 (1996). https://doi.org/10.1007/Bf00354629

    Article  CAS  Google Scholar 

  80. S. Reyda, E. Jacob, R. Zwilling, W. Stocker, cDNA cloning, bacterial expression, in vitro renaturation and affinity purification of the zinc endopeptidase astacin. Biochem. J. 344(Pt 3), 851–857 (1999). https://doi.org/10.1042/0264-6021:3440851

    Article  CAS  Google Scholar 

  81. U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  CAS  Google Scholar 

  82. J. Sambrook, F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual (Science Press, Beijing, 1989, in Chinese)

    Google Scholar 

  83. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  Google Scholar 

  84. J. ChandraRajan, L. Klein, Determination of inorganic phosphorus in the presence of organic phosphorus and high concentrations of proteins. Anal. Biochem. 72, 407–412 (1976)

    Article  CAS  Google Scholar 

  85. F. Marin et al., Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis. J. Biol. Chem. 280, 33895–33908 (2005). https://doi.org/10.1074/jbc.M506526200

    Article  CAS  Google Scholar 

  86. S. Li, L. Xie, Z. Ma, R. Zhang, cDNA cloning and characterization of a novel calmodulin-like protein from pearl oyster Pinctada fucata. FEBS J. 272, 4899–4910 (2005). https://doi.org/10.1111/j.1742-4658.2005.04899.x

    Article  CAS  Google Scholar 

  87. C.J. Coffee, R.A. Bradshaw, B.R. Goldin, C. Frieden, Identification of the sites of modification of bovine liver glutamate dehydrogenase reacted with trinitrobenzenesulfonate. Biochemistry 10, 3516–3526 (1971)

    Article  CAS  Google Scholar 

  88. A. Kotaki, M. Harada, K. Yagi, Reaction between Sulfhydryl Compounds and 2,4,6-Trinitrobenzene-1-Sulfonic Acid. J. Biochem. 55, 553–561 (1964)

    CAS  Google Scholar 

  89. H.T. Chen, L.P. Xie, Z.Y. Yu, G.R. Xu, R.Q. Zhang, Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site. Int. J. Biochem. Cell Biol. 37, 1446–1457 (2005). https://doi.org/10.1016/j.biocel.2005.02.002

    Article  CAS  Google Scholar 

  90. U. Bhattacharyya, G. Dhar, A. Bhaduri, An arginine residue is essential for stretching and binding of the substrate on UDP-glucose-4-epimerase from Escherichia coli. Use of a stacked and quenched uridine nucleotide fluorophore as probe. J. Biol. Chem. 274, 14573–14578 (1999)

    Article  CAS  Google Scholar 

  91. J. Kaminska, A. Wisniewska, J. Koscielak, Chemical modifications of alpha 1,6-fucosyltransferase define amino acid residues of catalytic importance. Biochimie 85, 303–310 (2003). https://doi.org/10.1016/s0300-9084(03)00074-9

    Article  CAS  Google Scholar 

  92. A. Garen, C. Levinthal, A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of e-coli .1. Purification and characterization of alkaline phosphatase. Biochim. Biophys. Acta 38, 470–483 (1960). https://doi.org/10.1016/0006-3002(60)91282-8

    Article  CAS  Google Scholar 

  93. H.M. Levy, P.D. Leber, E.M. Ryan, Inactivation of myosin by 2,4-dinitrophenol and protection by adenosine triphosphate and other phosphate compounds. J. Biol. Chem. 238, 3654–3659 (1963)

    CAS  Google Scholar 

  94. W.Z. Zheng et al., An essential tryptophan residue of green crab (syclla serrata) alkaline phosphatase. Biochem. Mol. Biol. Int. 41, 951–959 (1997)

    CAS  Google Scholar 

  95. C. Zhang, S. Li, Z.J. Ma, L.P. Xie, R.Q. Zhang, A novel matrix protein p10 from the nacre of pearl oyster (Pinctada fucata) and its effects on both CaCO3 crystal formation and mineralogenic cells. Mar. Biotechnol. 8, 624–633 (2006). https://doi.org/10.1007/s10126-006-6037-1

    Article  CAS  Google Scholar 

  96. G. Fu, S. Valiyaveettil, B. Wopenka, D.E. Morse, CaCO3 biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology. Biomacromolecules 6, 1289–1298 (2005). https://doi.org/10.1021/bm049314v

    Article  CAS  Google Scholar 

  97. R.E. Tashian, The carbonic anhydrases – widening perspectives on their evolution, expression and function. Bioessays 10, 186–192 (1989). https://doi.org/10.1002/bies.950100603

    Article  CAS  Google Scholar 

  98. Z. Yu, L. Xie, S. Lee, R. Zhang, A novel carbonic anhydrase from the mantle of the pearl oyster (Pinctada fucata). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 143, 190–194 (2006). https://doi.org/10.1016/j.cbpb.2005.11.006

    Article  CAS  Google Scholar 

  99. T. Miyashita, R. Takagi, H. Miyamoto, A. Matsushiro, Identical carbonic anhydrase contributes to nacreous or prismatic layer formation in Pinctada fucata (Mollusca : Bivalvia). Veliger 45, 250–255 (2002)

    Google Scholar 

  100. R.F. Chen, J.C. Kernohan, Combination of bovine carbonic anhydrase with a fluorescent sulfonamide. J. Biol. Chem. 242, 5813–5823 (1967)

    CAS  Google Scholar 

  101. R. Dermietzel, A. Leibstein, W. Siffert, N. Zamboglou, G. Gros, A fast screening method for histochemical-localization of carbonic-anhydrase – application to kidney, skeletal-muscle, and thrombocytes. J. Histochem. Cytochem. 33, 93–98 (1985)

    Article  CAS  Google Scholar 

  102. J.A. Freeman, K.M. Wilbur, Carbonic anhydrase in molluscs. Biol. Bull. 94, 55–59 (1948). https://doi.org/10.2307/1538209

    Article  CAS  Google Scholar 

  103. C. Zhang, L. Xie, J. Huang, L. Chen, R. Zhang, A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata). Biochem. Biophys. Res. Commun. 342, 632–639 (2006). https://doi.org/10.1016/j.bbrc.2006.01.182

    Article  CAS  Google Scholar 

  104. E.T. Degens, D.W. Spencer, R.H. Parker, Paleobiochemistry of molluscan shell proteins. Comp. Biochem. Physiol. 20, 553–579 (1967). https://doi.org/10.1016/0010-406x(67)90269-1

    Article  CAS  Google Scholar 

  105. M.E. Cuff, K.I. Miller, K.E. van Holde, W.A. Hendrickson, Crystal structure of a functional unit from Octopus hemocyanin. J. Mol. Biol. 278, 855–870 (1998). https://doi.org/10.1006/jmbi.1998.1647

    Article  CAS  Google Scholar 

  106. H. Decker, F. Tuczek, Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem. Sci. 25, 392–397 (2000). https://doi.org/10.1016/S0968-0004(00)01602-9

    Article  CAS  Google Scholar 

  107. H. Decker, N. Terwilliger, Cops and robbers: putative evolution of copper oxygen-binding proteins. J. Exp. Biol. 203, 1777–1782 (2000)

    CAS  Google Scholar 

  108. K.E. van Holde, K.I. Miller, H. Decker, Hemocyanins and invertebrate evolution. J. Biol. Chem. 276, 15563–15566 (2001). https://doi.org/10.1074/jbc.R100010200

    Article  Google Scholar 

  109. C. Gielens et al., Evidence for a cysteine-histidine thioether bridge in functional units of molluscan haemocyanins and location of the disulfide bridges in functional units d and g of the beta(c)-haemocyanin of Helix pomatia. Eur. J. Biochem. 248, 879–888 (1997). https://doi.org/10.1111/j.1432-1033.1997.00879.x

    Article  CAS  Google Scholar 

  110. U. Kupper, D.M. Niedermann, G. Travaglini, K. Lerch, Isolation and characterization of the tyrosinase gene from Neurospora-crassa. J. Biol. Chem. 264, 17250–17258 (1989)

    CAS  Google Scholar 

  111. Y. Fujita, Y. Uraga, E. Ichisima, Molecular-cloning and nucleotide-sequence of the protyrosinase gene, melo, from Aspergillus-oryzae and expression of the gene in yeast-cells. Bba-Gene Struct. Expr. 1261, 151–154 (1995). https://doi.org/10.1016/0167-4781(95)00011-5

    Article  Google Scholar 

  112. J. Gordon, M.R. Carriker, Sclerotized protein in the shell matrix of a bivalve mollusk. Mar. Biol. 57, 251–260 (1980). https://doi.org/10.1007/Bf00387568

    Article  CAS  Google Scholar 

  113. S. Sudo et al., Structures of mollusc shell framework proteins. Nature 387, 563–564 (1997). https://doi.org/10.1038/42391

    Article  CAS  Google Scholar 

  114. Y. Zhang et al., A novel matrix protein participating in the nacre framework formation of pearl oyster, Pinctada fucata. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 135, 565–573 (2003)

    Article  Google Scholar 

  115. G. Bevelander, H. Nakahara, An electron microscope study of the formation of the periostracum of Macrocallista maculata. Calcif. Tissue Res. 1, 55–67 (1967)

    Article  CAS  Google Scholar 

  116. J.M. Neff, Ultrastructural studies of periostracum formation in the hard shelled clam Mercenaria mercenaria (L). Tissue Cell 4, 311–326 (1972)

    Article  CAS  Google Scholar 

  117. C.A. Richardson, N.W. Runham, D.J. Crisp, A histological and ultrastructural study of the cells of the mantle edge of a marine bivalve, Cerastoderma edule. Tissue Cell 13, 715–730 (1981)

    Article  CAS  Google Scholar 

  118. M. Suzuki et al., Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem. J. 382, 205–213 (2004). https://doi.org/10.1042/BJ20040319

    Article  CAS  Google Scholar 

  119. H. Miyamoto, F. Miyoshi, J. Kohno, The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata. Zool. Sci. 22, 311–315 (2005). https://doi.org/10.2108/zsj.22.311

    Article  CAS  Google Scholar 

  120. X. Xiong, L. Chen, Y. Li, L. Xie, R. Zhang, Pf-ALMP, a novel astacin-like metalloproteinase with cysteine arrays, is abundant in hemocytes of pearl oyster Pinctada fucata. Biochim. Biophys. Acta 1759, 526–534 (2006). https://doi.org/10.1016/j.bbaexp.2006.09.006

    Article  CAS  Google Scholar 

  121. F.J. Genthner, A.K. Volety, L.M. Oliver, W.S. Fisher, Factors influencing in vitro killing of bacteria by hemocytes of the eastern oyster (Crassostrea virginica). Appl. Environ. Microbiol. 65, 3015–3020 (1999)

    CAS  Google Scholar 

  122. A.K. Volety, W.S. Fisher, In vitro killing of Perkinsus marinus by hemocytes of oysters Crassostrea virginica. J. Shellfish Res. 19, 827–834 (2000)

    Google Scholar 

  123. F. Mannello, L. Canesi, G. Gazzanelli, G. Gallo, Biochemical properties of metalloproteinases from the hemolymph of the mussel Mytilus galloprovincialis Lam. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 128, 507–515 (2001). https://doi.org/10.1016/S1096-4959(00)00352-3

    Article  CAS  Google Scholar 

  124. G. Ziegler, K. Paynter, D. Fisher, Matrix metalloproteinase-like activity from hemocytes of the eastern oyster, Crassostrea virginica. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 131, 361–370 (2002). https://doi.org/10.1016/S1095-6433(01)00518-9

    Article  CAS  Google Scholar 

  125. C. Montagnani, F. Le Roux, F. Berthe, J.M. Escoubas, Cg-TIMP, an inducible tissue inhibitor of metalloproteinase from the Pacific oyster Crassostrea gigas with a potential role in wound healing and defense mechanisms. FEBS Lett. 500, 64–70 (2001). https://doi.org/10.1016/S0014-5793(01)02559-5

    Article  CAS  Google Scholar 

  126. S. Manes et al., Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J. Biol. Chem. 272, 25706–25712 (1997). https://doi.org/10.1074/jbc.272.41.25706

    Article  CAS  Google Scholar 

  127. S. Manes et al., The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J. Biol. Chem. 274, 6935–6945 (1999). https://doi.org/10.1074/jbc.274.11.6935

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, R., Xie, L., Yan, Z. (2019). The Study on Enzymes Related to Biomineralization of Pinctada fucata . In: Biomineralization Mechanism of the Pearl Oyster, Pinctada fucata. Springer, Singapore. https://doi.org/10.1007/978-981-13-1459-9_4

Download citation

Publish with us

Policies and ethics