Skip to main content

Muscle Changes During Atrophy

  • Chapter
  • First Online:
Muscle Atrophy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1088))

Abstract

Muscle atrophy typically is a direct effect of protein degradation induced by a diversity of pathophysiologic states such as disuse, immobilization, denervation, aging, sepsis, cachexia, glucocorticoid treatment, hereditary muscular disorders, cancer, diabetes and obesity, kidney and heart failure, and others. Muscle atrophy is defined by changes in the muscles, consisting in shrinkage of myofibers, changes in the types of fiber and myosin isoforms, and a net loss of cytoplasm, organelles and overall a protein loss. Although in the literature there are extensive studies in a range of animal models, the paucity of human data is a reality. This chapter is focused on various aspects of muscle wasting and describes the transitions of myofiber types during the progression of muscle atrophy in several pathological states. Clinical conditions associated with muscle atrophy have been grouped based on the fast-to-slow or slow-to-fast fiber-type shifts. We have also summarized the ultrastructural and histochemical features characteristic for muscle atrophy in clinical and experimental models for aging, cancer, diabetes and obesity, and heart failure and arrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simon L, Jolley SE, Molina PE (2017) Alcoholic myopathy: pathophysiologic mechanisms and clinical implications. Alcohol Res 38:207–217

    PubMed  PubMed Central  Google Scholar 

  2. Kneppers AEM, Langen RCJ, Gosker HR, Verdijk LB, Cebron LN, Leermakers PA, Kelders MCJM, de Theije CC, Omersa D, Lainscak M, Schols AMWJ (2017) Increased myogenic and protein turnover signaling in skeletal muscle of chronic obstructive pulmonary disease patients with sarcopenia. J Am Med Dir Assoc 18:637

    Article  PubMed  Google Scholar 

  3. de Oliveira SA, Dutra MT, de Moraes WMAM, Funghetto SS, de FD L, Dos Santos PHF, Vieira DCL, Nascimento DDC, Orsano VSM, Schoenfeld BJ, Prestes J (2018) Resistance training-induced gains in muscle strength, body composition, and functional capacity are attenuated in elderly women with sarcopenic obesity. Clin Interv Aging 13:411–417

    Article  Google Scholar 

  4. Vellas B, Fielding R, Bhasin S, Cerreta F, Goodpaster B, Guralnik JM, Kritchevsky S, Legrand V, Forkin C, Magaziner J, Morley JE, Rodriguez-Manas L, Roubenoff R, Studenski S, Villareal DT, Cesari M (2016) Sarcopenia trials in specific diseases: report by the international conference on Frailty and Sarcopenia research task force. J Frailty Aging 5:194–200

    CAS  PubMed  Google Scholar 

  5. Sedano MJ, Canga A, de PC, Polo JM, Berciano J (2013) Muscle MRI in severe Guillain-Barre syndrome with motor nerve inexcitability. J Neurol 260:1624–1630

    Article  PubMed  Google Scholar 

  6. Bowerman M, Murray LM, Scamps F, Schneider BL, Kothary R, Raoul C (2017) Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: converging roads to therapeutic development. Eur J Med Genet. https://doi.org/10.1016/j.ejmg.2017.12.001

    Article  PubMed  Google Scholar 

  7. Tosolini AP, Sleigh JN (2017) Motor neuron gene therapy: lessons from spinal muscular atrophy for amyotrophic lateral sclerosis. Front Mol Neurosci 10:405

    Article  PubMed  PubMed Central  Google Scholar 

  8. Berridge BR, Van Vleet JF, Herman E (2013) Cardiac, vascular, and skeletal muscle systems. In: Haschek WM, Rousseaux CG, Wallig MA, Bolon B, Ochoa R (eds) Haschek and Rousseaux’s handbook of toxicologic pathology. Elsevier, Amsterdam

    Google Scholar 

  9. Dubowitz D, Sewry CA, Oldfors A (2013) Muscle biopsy: a practical approach. Elsevier, Amsterdam

    Google Scholar 

  10. Pernus F, Erzen I (1994) Fibre size, atrophy, and hypertrophy factors in vastus lateralis muscle from 18- to 29-year-old men. J Neurol Sci 121:194–202

    Article  CAS  PubMed  Google Scholar 

  11. Tajsharghi H, Hilton-Jones D, Raheem O, Saukkonen AM, Oldfors A, Udd B (2010) Human disease caused by loss of fast IIa myosin heavy chain due to recessive MYH2 mutations. Brain 133:1451–1459

    Article  PubMed  Google Scholar 

  12. Mastaglia FL, Walton JN (1971) Histological and histochemical changes in skeletal muscle from cases of chronic juvenile and early adult spinal muscular atrophy (the Kugelberg-Welander syndrome). J Neurol Sci 12:15–44

    Article  CAS  PubMed  Google Scholar 

  13. Yoshihara K, Shirai Y, Nakayama Y, Uesaka S (2001) Histochemical changes in the multifidus muscle in patients with lumbar intervertebral disc herniation. Spine (Phila Pa 1976) 26:622–626

    Article  CAS  Google Scholar 

  14. Snow LM, McLoon LK, Thompson LV (2005) Adult and developmental myosin heavy chain isoforms in soleus muscle of aging Fischer Brown Norway rat. Anat Rec A Discov Mol Cell Evol Biol 286:866–873

    Article  PubMed  CAS  Google Scholar 

  15. Vihola A, Bassez G, Meola G, Zhang S, Haapasalo H, Paetau A, Mancinelli E, Rouche A, Hogrel JY, Laforet P, Maisonobe T, Pellissier JF, Krahe R, Eymard B, Udd B (2003) Histopathological differences of myotonic dystrophy type 1 (DM1) and PROMM/DM2. Neurology 60:1854–1857

    Article  CAS  PubMed  Google Scholar 

  16. van WT, de HA, van der Laarse WJ, Jaspers RT (2010) The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? Eur J Appl Physiol 110:665–694

    Article  Google Scholar 

  17. Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S (2013) Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45:2191–2199

    Article  CAS  PubMed  Google Scholar 

  18. Grimby G, Broberg C, Krotkiewska I, Krotkiewski M (1976) Muscle fiber composition in patients with traumatic cord lesion. Scand J Rehabil Med 8:37–42

    CAS  PubMed  Google Scholar 

  19. Herbison GJ, Jaweed MM, Ditunno JF (1979) Muscle atrophy in rats following denervation, casting, inflammation, and tenotomy. Arch Phys Med Rehabil 60:401–404

    CAS  PubMed  Google Scholar 

  20. Ohira Y, Jiang B, Roy RR, Oganov V, Ilyina-Kakueva E, Marini JF, Edgerton VR (1992) Rat soleus muscle fiber responses to 14 days of spaceflight and hindlimb suspension. J Appl Physiol (1985) 73:51S–57S

    Article  CAS  Google Scholar 

  21. Campione M, Ausoni S, Guezennec CY, Schiaffino S (1993) Myosin and troponin changes in rat soleus muscle after hindlimb suspension. J Appl Physiol (1985) 74:1156–1160

    Article  CAS  Google Scholar 

  22. Sullivan MJ, Duscha BD, Klitgaard H, Kraus WE, Cobb FR, Saltin B (1997) Altered expression of myosin heavy chain in human skeletal muscle in chronic heart failure. Med Sci Sports Exerc 29:860–866

    Article  CAS  PubMed  Google Scholar 

  23. Satta A, Migliori GB, Spanevello A, Neri M, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1997) Fibre types in skeletal muscles of chronic obstructive pulmonary disease patients related to respiratory function and exercise tolerance. Eur Respir J 10:2853–2860

    Article  CAS  PubMed  Google Scholar 

  24. Goldberg AL, Goodman HM (1969) Relationship between cortisone and muscle work in determining muscle size. J Physiol 200:667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mendell JR, Engel WK (1971) The fine structure of type II muscle fiber atrophy. Neurology 21:358–365

    Article  CAS  PubMed  Google Scholar 

  26. Armstrong RB, Gollnick PD, Ianuzzo CD (1975) Histochemical properties of skeletal muscle fibers in streptozotocin-diabetic rats. Cell Tissue Res 162:387–394

    Article  CAS  PubMed  Google Scholar 

  27. Li JB, Goldberg AL (1976) Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles. Am J Phys 231:441–448

    CAS  Google Scholar 

  28. Holloszy JO, Chen M, Cartee GD, Young JC (1991) Skeletal muscle atrophy in old rats: differential changes in the three fiber types. Mech Ageing Dev 60:199–213

    Article  CAS  PubMed  Google Scholar 

  29. Larsson L, Biral D, Campione M, Schiaffino S (1993) An age-related type IIB to IIX myosin heavy chain switching in rat skeletal muscle. Acta Physiol Scand 147:227–234

    Article  CAS  PubMed  Google Scholar 

  30. Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50:11–16

    PubMed  Google Scholar 

  31. Tiao G, Lieberman M, Fischer JE, Hasselgren PO (1997) Intracellular regulation of protein degradation during sepsis is different in fast- and slow-twitch muscle. Am J Phys 272:R849–R856

    CAS  Google Scholar 

  32. Levine S, Kaiser L, Leferovich J, Tikunov B (1997) Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med 337:1799–1806

    Article  CAS  PubMed  Google Scholar 

  33. Tikunov B, Levine S, Mancini D (1997) Chronic congestive heart failure elicits adaptations of endurance exercise in diaphragmatic muscle. Circulation 95:910–916

    Article  CAS  PubMed  Google Scholar 

  34. Mercadier JJ, Schwartz K, Schiaffino S, Wisnewsky C, Ausoni S, Heimburger M, Marrash R, Pariente R, Aubier M (1998) Myosin heavy chain gene expression changes in the diaphragm of patients with chronic lung hyperinflation. Am J Phys 274:L527–L534

    CAS  Google Scholar 

  35. Acharyya S, Butchbach ME, Sahenk Z, Wang H, Saji M, Carathers M, Ringel MD, Skipworth RJ, Fearon KC, Hollingsworth MA, Muscarella P, Burghes AH, Rafael-Fortney JA, Guttridge DC (2005) Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell 8:421–432

    Article  CAS  PubMed  Google Scholar 

  36. Serrano AL, Jardi M, Suelves M, Klotman PE, Munoz-Canoves P (2008) HIV-1 transgenic expression in mice induces selective atrophy of fast-glycolytic skeletal muscle fibers. Front Biosci 13:2797–2805

    Article  CAS  PubMed  Google Scholar 

  37. Gannon J, Doran P, Kirwan A, Ohlendieck K (2009) Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age. Eur J Cell Biol 88:685–700

    Article  CAS  PubMed  Google Scholar 

  38. Hering T, Braubach P, Landwehrmeyer GB, Lindenberg KS, Melzer W (2016) Fast-to-slow transition of skeletal muscle contractile function and corresponding changes in Myosin heavy and light chain formation in the R6/2 mouse model of Huntington’s disease. PLoS One 11:e0166106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang Y, Pessin JE (2013) Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 16:243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sandona D, Desaphy JF, Camerino GM, Bianchini E, Ciciliot S, Danieli-Betto D, Dobrowolny G, Furlan S, Germinario E, Goto K, Gutsmann M, Kawano F, Nakai N, Ohira T, Ohno Y, Picard A, Salanova M, Schiffl G, Blottner D, Musaro A, Ohira Y, Betto R, Conte D, Schiaffino S (2012) Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission. PLoS One 7:e33232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Furuno K, Goodman MN, Goldberg AL (1990) Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy. J Biol Chem 265:8550–8557

    CAS  PubMed  Google Scholar 

  42. Wing SS, Goldberg AL (1993) Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am J Phys 264:E668–E676

    CAS  Google Scholar 

  43. Temparis S, Asensi M, Taillandier D, Aurousseau E, Larbaud D, Obled A, Bechet D, Ferrara M, Estrela JM, Attaix D (1994) Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats. Cancer Res 54:5568–5573

    CAS  PubMed  Google Scholar 

  44. Wing SS, Banville D (1994) 14-kDa ubiquitin-conjugating enzyme: structure of the rat gene and regulation upon fasting and by insulin. Am J Phys 267:E39–E48

    Article  CAS  Google Scholar 

  45. Chrysis D, Underwood LE (1999) Regulation of components of the ubiquitin system by insulin-like growth factor I and growth hormone in skeletal muscle of rats made catabolic with dexamethasone. Endocrinology 140:5635–5641

    Article  CAS  PubMed  Google Scholar 

  46. Lecker SH, Solomon V, Price SR, Kwon YT, Mitch WE, Goldberg AL (1999) Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats. J Clin Invest 104:1411–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fischer D, Sun X, Gang G, Pritts T, Hasselgren PO (2000) The gene expression of ubiquitin ligase E3alpha is upregulated in skeletal muscle during sepsis in rats-potential role of glucocorticoids. Biochem Biophys Res Commun 267:504–508

    Article  CAS  PubMed  Google Scholar 

  48. Lorite MJ, Smith HJ, Arnold JA, Morris A, Thompson MG, Tisdale MJ (2001) Activation of ATP-ubiquitin-dependent proteolysis in skeletal muscle in vivo and murine myoblasts in vitro by a proteolysis-inducing factor (PIF). Br J Cancer 85:297–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  CAS  PubMed  Google Scholar 

  50. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98:14440–14445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwon YT, Xia Z, Davydov IV, Lecker SH, Varshavsky A (2001) Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3alpha) of the N-end rule pathway. Mol Cell Biol 21:8007–8021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li YP, Lecker SH, Chen Y, Waddell ID, Goldberg AL, Reid MB (2003) TNF-alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J 17:1048–1057

    Article  CAS  PubMed  Google Scholar 

  53. Kwak KS, Zhou X, Solomon V, Baracos VE, Davis J, Bannon AW, Boyle WJ, Lacey DL, Han HQ (2004) Regulation of protein catabolism by muscle-specific and cytokine-inducible ubiquitin ligase E3alpha-II during cancer cachexia. Cancer Res 64:8193–8198

    Article  CAS  PubMed  Google Scholar 

  54. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51

    Article  CAS  PubMed  Google Scholar 

  55. Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17:1807–1819

    Article  CAS  PubMed  Google Scholar 

  56. Sacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, Lecker SH, Goldberg AL (2007) Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J 21:140–155

    Article  CAS  PubMed  Google Scholar 

  57. Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I, Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N, Mills EM, Takeda S, Nikawa T (2009) Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. Mol Cell Biol 9:4798–4811

    Article  CAS  Google Scholar 

  58. Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, Kumar A (2010) Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol 191:1395–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baehr LM, Furlow JD, Bodine SC (2011) Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 589:4759–4776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Raben N, Hill V, Shea L, Takikita S, Baum R, Mizushima N, Ralston E, Plotz P (2008) Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet 17:3897–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, McAnally J, Shelton JM, Backs J, Klein WH, Richardson JA, Bassel-Duby R, Olson EN (2010) Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143:35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moresi V, Carrer M, Grueter CE, Rifki OF, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2012) Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice. Proc Natl Acad Sci U S A 109:1649–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45:2121–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, Blaauw B, DePinho RA, Sandri M (2015) Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 6:6670

    Article  CAS  PubMed  Google Scholar 

  65. Bothe GW, Haspel JA, Smith CL, Wiener HH, Burden SJ (2000) Selective expression of Cre recombinase in skeletal muscle fibers. Genesis 26:165–166

    Article  CAS  PubMed  Google Scholar 

  66. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  67. Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6:25–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bae SK, Cha HN, Ju TJ, Kim YW, Kim HS, Kim YD, Dan JM, Kim JY, Kim SD, Park SY (2012) Deficiency of inducible nitric oxide synthase attenuates immobilization-induced skeletal muscle atrophy in mice. J Appl Physiol (1985) 113:114–123

    Article  CAS  Google Scholar 

  69. Reed SA, Sandesara PB, Senf SM, Judge AR (2012) Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J 26:987–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Selsby JT, Morine KJ, Pendrak K, Barton ER, Sweeney HL (2012) Rescue of dystrophic skeletal muscle by PGC-1alpha involves a fast to slow fiber type shift in the mdx mouse. PLoS One 7:e30063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vogel H, Zamecnik J (2005) Diagnostic immunohistology of muscle diseases. J Neuropathol Exp Neurol 64:181–193

    Article  CAS  PubMed  Google Scholar 

  72. Lee WS, Cheung WH, Qin L, Tang N, Leung KS (2006) Age-associated decrease of type IIA/B human skeletal muscle fibers. Clin Orthop Relat Res 450:231–237

    Article  PubMed  Google Scholar 

  73. Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R (2000) Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol (1985) 88:1321–1326

    Article  CAS  Google Scholar 

  74. Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, Harris TB (2002) Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc 50:897–904

    Article  PubMed  Google Scholar 

  75. Hvid LG, Suetta C, Nielsen JH, Jensen MM, Frandsen U, Ortenblad N, Kjaer M, Aagaard P (2014) Aging impairs the recovery in mechanical muscle function following 4 days of disuse. Exp Gerontol 52:1–8

    Article  CAS  PubMed  Google Scholar 

  76. Rolland Y, Van Abellan KG, Gillette-Guyonnet S, Vellas B (2011) Cachexia versus sarcopenia. Curr Opin Clin Nutr Metab Care 14:15–21

    Article  PubMed  Google Scholar 

  77. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on Sarcopenia in older people. Age Ageing 39:412–423

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tinetti ME, Williams CS (1997) Falls, injuries due to falls, and the risk of admission to a nursing home. N Engl J Med 337:1279–1284

    Article  CAS  PubMed  Google Scholar 

  79. Lexell J, Taylor CC, Sjostrom M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84:275–294

    Article  CAS  PubMed  Google Scholar 

  80. Volpi E, Sheffield-Moore M, Rasmussen BB, Wolfe RR (2001) Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. JAMA 286:1206–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1:642–645

    Article  CAS  PubMed  Google Scholar 

  82. Muller-Hocker J (1992) Mitochondria and ageing. Brain Pathol 2:149–158

    Article  CAS  PubMed  Google Scholar 

  83. Fayet G, Jansson M, Sternberg D, Moslemi AR, Blondy P, Lombes A, Fardeau M, Oldfors A (2002) Ageing muscle: clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function. Neuromuscul Disord 12:484–493

    Article  PubMed  Google Scholar 

  84. Greaves LC, Turnbull DM (2009) Mitochondrial DNA mutations and ageing. Biochim Biophys Acta 1790:1015–1020

    Article  CAS  PubMed  Google Scholar 

  85. Marzetti E, Hwang JC, Lees HA, Wohlgemuth SE, Dupont-Versteegden EE, Carter CS, Bernabei R, Leeuwenburgh C (2010) Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochim Biophys Acta 1800:235–244

    Article  CAS  PubMed  Google Scholar 

  86. Jackson MJ, McArdle A (2011) Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species. J Physiol 589:2139–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Deschenes MR, Gaertner JR, O’Reilly S (2013) The effects of sarcopenia on muscles with different recruitment patterns and myofiber profiles. Curr Aging Sci 6:266–272

    Article  PubMed  Google Scholar 

  88. Park SC, Kim WH, Lee MC, Seong SC, Song KY, Choe MA (1994) Modulation of transglutaminase expression in rat skeletal muscle by induction of atrophy and endurance training. J Korean Med Sci 9:490–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Connor NP, Suzuki T, Lee K, Sewall GK, Heisey DM (2002) Neuromuscular junction changes in aged rat thyroarytenoid muscle. Ann Otol Rhinol Laryngol 111:579–586

    Article  PubMed  Google Scholar 

  90. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, Boudreau R, Manini TM, Nevitt M, Newman AB, Goodpaster BH (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90:1579–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wronska A, Kmiec Z (2012) Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxford) 205:194–208

    Article  CAS  Google Scholar 

  92. Raguso CA, Kyle U, Kossovsky MP, Roynette C, Paoloni-Giacobino A, Hans D, Genton L, Pichard C (2006) A 3-year longitudinal study on body composition changes in the elderly: role of physical exercise. Clin Nutr 25:573–580

    Article  PubMed  Google Scholar 

  93. Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A, Wong C, Levinger P, Asrar Ul HM, Hare DL, Price SR, Levinger I (2016) Muscle atrophy in patients with type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc Immunol Rev 22:94–109

    PubMed  PubMed Central  Google Scholar 

  94. Patsouris D, Cao JJ, Vial G, Bravard A, Lefai E, Durand A, Durand C, Chauvin MA, Laugerette F, Debard C, Michalski MC, Laville M, Vidal H, Rieusset J (2014) Insulin resistance is associated with MCP1-mediated macrophage accumulation in skeletal muscle in mice and humans. PLoS One 9:e110653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Mashili F, Chibalin AV, Krook A, Zierath JR (2013) Constitutive STAT3 phosphorylation contributes to skeletal muscle insulin resistance in type 2 diabetes. Diabetes 62:457–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang L, Pan J, Dong Y, Tweardy DJ, Dong Y, Garibotto G, Mitch WE (2013) Stat3 activation links a C/EBPdelta to myostatin pathway to stimulate loss of muscle mass. Cell Metab 18:368–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chiu CY, Yang RS, Sheu ML, Chan DC, Yang TH, Tsai KS, Chiang CK, Liu SH (2016) Advanced glycation end-products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE-mediated, AMPK-down-regulated, Akt pathway. J Pathol 238:470–482

    Article  CAS  PubMed  Google Scholar 

  98. Hittel DS, Hathout Y, Hoffman EP, Houmard JA (2005) Proteome analysis of skeletal muscle from obese and morbidly obese women. Diabetes 54:1283–1288

    Article  CAS  PubMed  Google Scholar 

  99. Wijers SL, Smit E, Saris WH, Mariman EC, van Marken Lichtenbelt WD (2010) Cold- and overfeeding-induced changes in the human skeletal muscle proteome. J Proteome Res 9:2226–2235

    Article  CAS  PubMed  Google Scholar 

  100. Andreassen CS, Jensen JM, Jakobsen J, Ulhoj BP, Andersen H (2014) Striated muscle fiber size, composition, and capillary density in diabetes in relation to neuropathy and muscle strength. J Diabetes 6:462–471

    Article  PubMed  Google Scholar 

  101. Leenders M, Verdijk LB, van der Hoeven L, Adam JJ, VAN KJ, Nilwik R, van Loon LJ (2013) Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc 14:585–592

    Article  PubMed  Google Scholar 

  102. Jerkovic R, Bosnar A, Jurisic-Erzen D, Azman J, Starcevic-Klasan G, Peharec S, Coklo M (2009) The effects of long-term experimental diabetes mellitus type I on skeletal muscle regeneration capacity. Coll Antropol 33:1115–1119

    PubMed  Google Scholar 

  103. Xiang J, Zhao Y, Chen J, Zhou J (2014) Expression of basic fibroblast growth factor, protein kinase C and members of the apoptotic pathway in skeletal muscle of streptozotocin-induced diabetic rats. Tissue Cell 46:1–8

    Article  CAS  PubMed  Google Scholar 

  104. Medina-Sanchez M, Rodriguez-Sanchez C, Vega-Alvarez JA, Menedez-Pelaez A, Perez-Casas A (1991) Proximal skeletal muscle alterations in streptozotocin-diabetic rats: a histochemical and morphometric analysis. Am J Anat 191:48–56

    Article  CAS  PubMed  Google Scholar 

  105. Klueber KM, Feczko JD (1994) Ultrastructural, histochemical, and morphometric analysis of skeletal muscle in a murine model of type I diabetes. Anat Rec 239:18–34

    Article  CAS  PubMed  Google Scholar 

  106. Chen GQ, Mou CY, Yang YQ, Wang S, Zhao ZW (2011) Exercise training has beneficial anti-atrophy effects by inhibiting oxidative stress-induced MuRF1 upregulation in rats with diabetes. Life Sci 89:44–49

    Article  CAS  PubMed  Google Scholar 

  107. Johns N, Stephens NA, Fearon KC (2013) Muscle wasting in cancer. Int J Biochem Cell Biol 45:2215–2229

    Article  CAS  PubMed  Google Scholar 

  108. Darnell RB, Posner JB (2003) Paraneoplastic syndromes involving the nervous system. N Engl J Med 349:1543–1554

    Article  CAS  PubMed  Google Scholar 

  109. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12:489–495

    Article  PubMed  Google Scholar 

  110. Weber MA, Krakowski-Roosen H, Schroder L, Kinscherf R, Krix M, Kopp-Schneider A, Essig M, Bachert P, Kauczor HU, Hildebrandt W (2009) Morphology, metabolism, microcirculation, and strength of skeletal muscles in cancer-related cachexia. Acta Oncol 48:116–124

    Article  PubMed  Google Scholar 

  111. Eley HL, Skipworth RJ, Deans DA, Fearon KC, Tisdale MJ (2008) Increased expression of phosphorylated forms of RNA-dependent protein kinase and eukaryotic initiation factor 2alpha may signal skeletal muscle atrophy in weight-losing cancer patients. Br J Cancer 98:443–449

    Article  CAS  PubMed  Google Scholar 

  112. Zampieri S, Doria A, Adami N, Biral D, Vecchiato M, Savastano S, Corbianco S, Carraro U, Merigliano S (2010) Subclinical myopathy in patients affected with newly diagnosed colorectal cancer at clinical onset of disease: evidence from skeletal muscle biopsies. Neurol Res 32:20–25

    Article  CAS  PubMed  Google Scholar 

  113. So MW, Koo BS, Kim YG, Lee CK, Yoo B (2011) Idiopathic inflammatory myopathy associated with malignancy: a retrospective cohort of 151 Korean patients with dermatomyositis and polymyositis. J Rheumatol 38:2432–2435

    Article  CAS  PubMed  Google Scholar 

  114. Silvestre J, Santos L, Batalha V, Del RA, Lima C, Carvalho A, Martins A, Miranda H, Cabral F, Felix A, Aleixo A (2009) Paraneoplastic necrotizing myopathy in a woman with breast cancer: a case report. J Med Case Rep 3:95

    Article  PubMed  PubMed Central  Google Scholar 

  115. Dalakas MC (2011) Inflammatory myopathies: management of steroid resistance. Curr Opin Neurol 24:457–462

    Article  CAS  PubMed  Google Scholar 

  116. De BJ, Vervaet V, Van den Bergh P (2004) Necrotizing myopathy with microvascular deposition of the complement membrane attack complex. Clin Neuropathol 23:76–79

    Google Scholar 

  117. Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto EM, Cavallini G, Bonelli G, Baccino FM, Costelli P (2013) Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol 182:1367–1378

    Article  CAS  PubMed  Google Scholar 

  118. Holecek M (2012) Muscle wasting in animal models of severe illness. Int J Exp Pathol 93:157–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS, Lacey DL, Goldberg AL, Han HQ (2010) Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142:531–543

    Article  CAS  PubMed  Google Scholar 

  120. Kumar A, Bhatnagar S, Paul PK (2012) TWEAK and TRAF6 regulate skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 15:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Paul PK, Kumar A (2011) TRAF6 coordinates the activation of autophagy and ubiquitin-proteasome systems in atrophying skeletal muscle. Autophagy 7:555–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kinugawa S, Takada S, Matsushima S, Okita K, Tsutsui H (2015) Skeletal muscle abnormalities in heart failure. Int Heart J 56:475–484

    Article  CAS  PubMed  Google Scholar 

  123. Carvalho RF, Castan EP, Coelho CA, Lopes FS, Almeida FL, Michelin A, de Souza RW, Araujo JP Jr, Cicogna AC, Dal Pai-Silva M (2010) Heart failure increases atrogin-1 and MuRF1 gene expression in skeletal muscle with fiber type-specific atrophy. J Mol Histol 41:81–87

    Article  CAS  PubMed  Google Scholar 

  124. Manfredi LH, Paula-Gomes S, Zanon NM, Kettelhut IC (2017) Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents. Braz J Med Biol Res 50:e6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bowen TS, Rolim NP, Fischer T, Baekkerud FH, Medeiros A, Werner S, Bronstad E, Rognmo O, Mangner N, Linke A, Schuler G, Silva GJ, Wisloff U, Adams V (2015) Heart failure with preserved ejection fraction induces molecular, mitochondrial, histological, and functional alterations in rat respiratory and limb skeletal muscle. Eur J Heart Fail 17:263–272

    Article  CAS  PubMed  Google Scholar 

  126. Damatto RL, Martinez PF, Lima AR, Cezar MD, Campos DH, Oliveira Junior SA, Guizoni DM, Bonomo C, Nakatani BT, Dal Pai SM, Carvalho RF, Okoshi K, Okoshi MP (2013) Heart failure-induced skeletal myopathy in spontaneously hypertensive rats. Int J Cardiol 167:698–703

    Article  CAS  PubMed  Google Scholar 

  127. Vescovo G, Dalla LL (2006) Skeletal muscle apoptosis in experimental heart failure: the only link between inflammation and skeletal muscle wastage? Curr Opin Clin Nutr Metab Care 9:416–422

    Article  CAS  PubMed  Google Scholar 

  128. Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation 103:2055–2059

    Article  CAS  PubMed  Google Scholar 

  129. Dalla LL, Vescovo G, Volterrani M (2008) Physiological basis for contractile dysfunction in heart failure. Curr Pharm Des 14:2572–2581

    Article  Google Scholar 

  130. Isner JM, Hawley RJ, Weintraub AM, Engel WK (1979) Cardiac findings in Charcot-Marie-Tooth disease. A prospective study of 68 patients. Arch Intern Med 139:1161–1165

    Article  CAS  PubMed  Google Scholar 

  131. Araki A, Katsuno M, Suzuki K, Banno H, Suga N, Hashizume A, Mano T, Hijikata Y, Nakatsuji H, Watanabe H, Yamamoto M, Makiyama T, Ohno S, Fukuyama M, Morimoto S, Horie M, Sobue G (2014) Brugada syndrome in spinal and bulbar muscular atrophy. Neurology 82:1813–1821

    Article  PubMed  Google Scholar 

  132. Finsterer J, Stollberger C (2018) Only some patients with bulbar and spinal muscular atrophy may develop cardiac disease. Mol Genet Metab Rep 14:44–46

    Article  PubMed  Google Scholar 

  133. Sanguinetti MC (2010) HERG1 channelopathies. Pflugers Arch 460:265–276

    Article  CAS  PubMed  Google Scholar 

  134. Molenaar P, Chen L, Parsonage WA (2006) Cardiac implications for the use of beta2-adrenoceptor agonists for the management of muscle wasting. Br J Pharmacol 147:583–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

BM Radu is currently funded from Competitiveness Operational Programme 2014–2020 project P_37_675 (contract no. 146/2016), Priority Axis 1, Action 1.1.4, co-financed by the European Funds for Regional Development and Romanian Government funds. The contents of this publication do not necessarily reflect the official position of the European Union or Romanian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanda Maria Cretoiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dumitru, A., Radu, B.M., Radu, M., Cretoiu, S.M. (2018). Muscle Changes During Atrophy. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_4

Download citation

Publish with us

Policies and ethics