Skip to main content

Physical Exercise for Muscle Atrophy

  • Chapter
  • First Online:
Muscle Atrophy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1088))

Abstract

The most direct characteristic of muscle atrophy is reduction in muscle mass, which is due to increased protein degradation or reduced protein synthesis in skeletal muscle. The loss of muscle mass can directly affect the quality of daily life, prolong the recovery period, and become the main risk factor for chronic diseases. However, there is currently no effective way to prevent and treat this disease, and therefore it is imperative to explore effective therapeutic approaches for muscle atrophy. It is well known that physical exercise is important for maintaining good health and long-term adherence to exercise can reduce the risk of cardiovascular diseases, obesity, and diabetes. It is also well established that exercise training can promote the synthesis of muscle protein and activate signaling pathways that regulate the metabolism and function of muscle fibers. Therefore, exercise can be used as a method to treat muscle atrophy in many of these conditions. Mitochondria play an important role in skeletal muscle homeostasis and bioenergy metabolism. Mitochondria are sensitive to contractile signals, and hence exercise can improve mitochondrial function and promote biosynthesis, which ultimately maintains the healthy state of cells and the whole body. On the other hand, frequent unaccustomed exercise will change the structure and function of skeletal muscle fibers, which is called exercise-induced muscle damage. When the exercise-induced muscle damage happens, it can cause temporary muscle damage and soreness, giving a negative effect on the muscle function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang S, Chen N (2018) Regulatory role of MicroRNAs in muscle atrophy during exercise intervention. Int J Mol Sci 19(2):405. https://doi.org/10.3390/ijms19020405

    Article  PubMed Central  Google Scholar 

  2. Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6(1):25–39. https://doi.org/10.1242/dmm.010389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Evans WJ (2010) Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr 91(4):1123s–1127s. https://doi.org/10.3945/ajcn.2010.28608A

    Article  CAS  PubMed  Google Scholar 

  4. Wang XNH (2013) MicroRNA in myogenesis and muscle atrophy. Curr Opin Clin Nutr 16(3):258–266. https://doi.org/10.1097/MCO.0b013e32835f81b9

    Article  CAS  Google Scholar 

  5. Takemoto Y, Fukada SI (2017) Molecular mechanism maintaining muscle satellite cells and the roles in sarcopenia. Clin Calcium 27(3):339–344 doi:CliCa1703339344

    PubMed  Google Scholar 

  6. Stephens NA, Gallagher IJ, Rooyackers O, Skipworth RJ, Tan BH, Marstrand T, Ross JA, Guttridge DC, Lundell L, Fearon KC, Timmons JA (2010) Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia. Genome Med 2(1):1 doi:ARTN 110.1186/gm122

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gordon BS, Kelleher AR, Kimball SR (2013) Regulation of muscle protein synthesis and the effects of catabolic states. Int J Biochem Cell B 45(10):2147–2157. https://doi.org/10.1016/j.biocel.2013.05.039

    Article  CAS  Google Scholar 

  8. Sandri M (2010) Autophagy in skeletal muscle. FEBS Lett 584(7):1411–1416. https://doi.org/10.1016/j.febslet.2010.01.056

    Article  CAS  PubMed  Google Scholar 

  9. Verdijk LB, Dirks ML, Snijders T, Prompers JJ, Beelen M, Jonkers RA, Thijssen DH, Hopman MT, Van Loon LJ (2012) Reduced satellite cell numbers with spinal cord injury and aging in humans. Med Sci Sports Exerc 44(12):2322–2330. https://doi.org/10.1249/MSS.0b013e3182667c2e

    Article  PubMed  Google Scholar 

  10. Phillips SM, Glover EI, Rennie MJ (2009) Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol (1985) 107(3):645–654. https://doi.org/10.1152/japplphysiol.00452.2009

    Article  CAS  Google Scholar 

  11. Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50:11–16

    PubMed  Google Scholar 

  12. Castro MJ, Apple DF, Staron RS, Campos GER, Dudley GA (1999) Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J Appl Physiol 86(1):350–358

    Article  CAS  PubMed  Google Scholar 

  13. Theilen NT, Kunkel GH, Tyagi SC (2017) The role of exercise and TFAM in preventing skeletal muscle atrophy. J Cell Physiol 232(9):2348–2358. https://doi.org/10.1002/jcp.25737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wiggs MP (2015) Can endurance exercise preconditioning prevention disuse muscle atrophy? Front Physiol 6:63. https://doi.org/10.3389/fphys.2015.00063

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dahlqvist JR, Vissing J (2016) Exercise therapy in Spinobulbar muscular atrophy and other neuromuscular disorders. J Mol Neurosci 58(3):388–393. https://doi.org/10.1007/s12031-015-0686-3

    Article  CAS  PubMed  Google Scholar 

  16. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP, American College of Sports M (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb

    Article  PubMed  Google Scholar 

  17. Ferraro E, Giammarioli AM, Chiandotto S, Spoletini I, Rosano G (2014) Exercise-induced skeletal muscle remodeling and metabolic adaptation: redox signaling and role of autophagy. Antioxid Redox Signal 21(1):154–176. https://doi.org/10.1089/ars.2013.5773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Glover EI, Phillips SM (2010) Resistance exercise and appropriate nutrition to counteract muscle wasting and promote muscle hypertrophy. Curr Opin Clin Nutr 13(6):630–634. https://doi.org/10.1097/MCO.0b013e32833f1ae5

    Article  Google Scholar 

  19. Minotti JR, Christoph I, Oka R, Weiner MW, Wells L, Massie BM (1991) Impaired skeletal muscle function in patients with congestive heart failure. Relationship to systemic exercise performance. J Clin Invest 88(6):2077–2082. https://doi.org/10.1172/JCI115537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lundby C, Jacobs RA (2016) Adaptations of skeletal muscle mitochondria to exercise training. Exp Physiol 101(1):17–22. https://doi.org/10.1113/Ep085319

    Article  CAS  PubMed  Google Scholar 

  21. Koltai E, Hart N, Taylor AW, Goto S, Ngo JK, Davies KJA, Radak Z (2012) Age-associated declines in mitochondrial biogenesis and protein quality control factors are minimized by exercise training. Am J Physiol-Reg I 303(2):R127–R134. https://doi.org/10.1152/ajpregu.00337.2011

    Article  CAS  Google Scholar 

  22. Wens I, Eijnde BO, Hansen D (2016) Muscular, cardiac, ventilatory and metabolic dysfunction in patients with multiple sclerosis: implications for screening, clinical care and endurance and resistance exercise therapy, a scoping review. J Neurol Sci 367:107–121. https://doi.org/10.1016/j.jns.2016.05.050

    Article  PubMed  Google Scholar 

  23. Booth FW, Thomason DB (1991) Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev 71(2):541–585. https://doi.org/10.1152/physrev.1991.71.2.541

    Article  CAS  PubMed  Google Scholar 

  24. Gutteridge JM, Halliwell B (2010) Antioxidants: molecules, medicines, and myths. Biochem Biophys Res Commun 393(4):561–564. https://doi.org/10.1016/j.bbrc.2010.02.071

    Article  CAS  PubMed  Google Scholar 

  25. Mikines KJ, Sonne B, Farrell PA, Tronier B, Galbo H (1988) Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Phys 254(3 Pt 1):E248–E259. https://doi.org/10.1152/ajpendo.1988.254.3.E248

    Article  CAS  Google Scholar 

  26. Borst SE (2004) Interventions for sarcopenia and muscle weakness in older people. Age Ageing 33(6):548–555. https://doi.org/10.1093/ageing/afh201

    Article  PubMed  Google Scholar 

  27. Colberg SR, Albright AL, Blissmer BJ, Braun B, Chasan-Taber L, Fernhall B, Regensteiner JG, Rubin RR, Sigal RJ, American College of Sports M, American Diabetes A (2010) Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Exercise and type 2 diabetes. Med Sci Sports Exerc 42(12):2282–2303. https://doi.org/10.1249/MSS.0b013e3181eeb61c

    Article  PubMed  Google Scholar 

  28. Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17(2):162–184. https://doi.org/10.1016/j.cmet.2012.12.012

    Article  CAS  PubMed  Google Scholar 

  29. Handschin C, Spiegelman BM (2008) The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454(7203):463–469. https://doi.org/10.1038/nature07206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-Sceppa C (2007) Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39(8):1435–1445. https://doi.org/10.1249/mss.0b013e3180616aa2

    Article  PubMed  Google Scholar 

  31. Thomason DB, Booth FW (1990) Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol (1985) 68(1):1–12. https://doi.org/10.1152/jappl.1990.68.1.1

    Article  CAS  Google Scholar 

  32. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280(17):4294–4314. https://doi.org/10.1111/febs.12253

    Article  CAS  PubMed  Google Scholar 

  33. Atherton PJ, Smith K (2012) Muscle protein synthesis in response to nutrition and exercise. J Physiol 590(5):1049–1057. https://doi.org/10.1113/jphysiol.2011.225003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Phys Cell Phys 287(4):C834–C843. https://doi.org/10.1152/ajpcell.00579.2003

    Article  CAS  Google Scholar 

  35. Tischler ME, Rosenberg S, Satarug S, Henriksen EJ, Kirby CR, Tome M, Chase P (1990) Different mechanisms of increased proteolysis in atrophy induced by denervation or unweighting of rat soleus muscle. Metabolism 39(7):756–763

    Article  CAS  PubMed  Google Scholar 

  36. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83(3):731–801. https://doi.org/10.1152/physrev.00029.2002

    Article  CAS  PubMed  Google Scholar 

  37. Maes K, Testelmans D, Powers S, Decramer M, Gayan-Ramirez G (2007) Leupeptin inhibits ventilator-induced diaphragm dysfunction in rats. Am J Respir Crit Care Med 175(11):1134–1138. https://doi.org/10.1164/rccm.200609-1342OC

    Article  CAS  PubMed  Google Scholar 

  38. Nelson WB, Smuder AJ, Hudson MB, Talbert EE, Powers SK (2012) Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Crit Care Med 40(6):1857–1863. https://doi.org/10.1097/CCM.0b013e318246bb5d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Talbert EE, Smuder AJ, Min K, Kwon OS, Powers SK (2013) Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy. J Appl Physiol (1985) 114(10):1482–1489. https://doi.org/10.1152/japplphysiol.00925.2012

    Article  CAS  Google Scholar 

  40. Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, Price SR, Mitch WE (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113(1):115–123. https://doi.org/10.1172/JCI18330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smuder AJ, Kavazis AN, Hudson MB, Nelson WB, Powers SK (2010) Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radic Biol Med 49(7):1152–1160. https://doi.org/10.1016/j.freeradbiomed.2010.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McClung JM, Kavazis AN, DeRuisseau KC, Falk DJ, Deering MA, Lee Y, Sugiura T, Powers SK (2007) Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am J Respir Crit Care Med 175(2):150–159. https://doi.org/10.1164/rccm.200601-142OC

    Article  CAS  PubMed  Google Scholar 

  43. Zhu S, Nagashima M, Khan MA, Yasuhara S, Kaneki M, Martyn JA (2013) Lack of caspase-3 attenuates immobilization-induced muscle atrophy and loss of tension generation along with mitigation of apoptosis and inflammation. Muscle Nerve 47(5):711–721. https://doi.org/10.1002/mus.23642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45(10):2121–2129. https://doi.org/10.1016/j.biocel.2013.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999) Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr 129(1S Suppl):227S–237S

    Article  CAS  PubMed  Google Scholar 

  46. de Boer MD, Selby A, Atherton P, Smith K, Seynnes OR, Maganaris CN, Maffulli N, Movin T, Narici MV, Rennie MJ (2007) The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol 585(Pt 1):241–251. https://doi.org/10.1113/jphysiol.2007.142828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kortebein P, Symons TB, Ferrando A, Paddon-Jones D, Ronsen O, Protas E, Conger S, Lombeida J, Wolfe R, Evans WJ (2008) Functional impact of 10 days of bed rest in healthy older adults. J Gerontol A Biol Sci Med Sci 63(10):1076–1081

    Article  PubMed  Google Scholar 

  48. Symons TB, Sheffield-Moore M, Chinkes DL, Ferrando AA, Paddon-Jones D (2009) Artificial gravity maintains skeletal muscle protein synthesis during 21 days of simulated microgravity. J Appl Physiol (1985) 107(1):34–38. https://doi.org/10.1152/japplphysiol.91137.2008

    Article  CAS  Google Scholar 

  49. Ferrando AA, Paddon-Jones D, Hays NP, Kortebein P, Ronsen O, Williams RH, McComb A, Symons TB, Wolfe RR, Evans W (2010) EAA supplementation to increase nitrogen intake improves muscle function during bed rest in the elderly. Clin Nutr 29(1):18–23. https://doi.org/10.1016/j.clnu.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  50. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3(11):1014–1019. https://doi.org/10.1038/ncb1101-1014

    Article  CAS  PubMed  Google Scholar 

  51. Adhihetty PJ, Ljubicic V, Hood DA (2007) Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle. Am J Physiol Endocrinol Metab 292(3):E748–E755. https://doi.org/10.1152/ajpendo.00311.2006

    Article  CAS  PubMed  Google Scholar 

  52. Muller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A, Van Remmen H (2007) Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am J Phys Regul Integr Comp Phys 293(3):R1159–R1168. https://doi.org/10.1152/ajpregu.00767.2006

    Article  CAS  Google Scholar 

  53. Kavazis AN, Talbert EE, Smuder AJ, Hudson MB, Nelson WB, Powers SK (2009) Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic Biol Med 46(6):842–850. https://doi.org/10.1016/j.freeradbiomed.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Powers SK (2014) Can antioxidants protect against disuse muscle atrophy? Sports Med 44(Suppl 2):S155–S165. https://doi.org/10.1007/s40279-014-0255-x

    Article  PubMed  Google Scholar 

  55. Lawler JM, Song W, Demaree SR (2003) Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 35(1):9–16

    Article  CAS  PubMed  Google Scholar 

  56. Falk DJ, Deruisseau KC, Van Gammeren DL, Deering MA, Kavazis AN, Powers SK (2006) Mechanical ventilation promotes redox status alterations in the diaphragm. J Appl Physiol (1985) 101(4):1017–1024. https://doi.org/10.1152/japplphysiol.00104.2006

    Article  CAS  Google Scholar 

  57. Min K, Smuder AJ, Kwon OS, Kavazis AN, Szeto HH, Powers SK (2011) Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. J Appl Physiol (1985) 111(5):1459–1466. https://doi.org/10.1152/japplphysiol.00591.2011

    Article  CAS  Google Scholar 

  58. Kondo H, Miura M, Itokawa Y (1993) Antioxidant enzyme systems in skeletal muscle atrophied by immobilization. Pflugers Arch 422(4):404–406

    Article  CAS  PubMed  Google Scholar 

  59. Powers SK, Talbert EE, Adhihetty PJ (2011) Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol 589(Pt 9):2129–2138. https://doi.org/10.1113/jphysiol.2010.201327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282. https://doi.org/10.1146/annurev.physiol.61.1.243

    Article  CAS  PubMed  Google Scholar 

  61. Michael LF, Wu ZD, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM (2001) Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. P Natl Acad Sci USA 98(7):3820–3825. https://doi.org/10.1073/pnas.061035098

    Article  CAS  Google Scholar 

  62. Wu ZD, Puigserver P, Andersson U, Zhang CY, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124. https://doi.org/10.1016/S0092-8674(00)80611-X

    Article  CAS  PubMed  Google Scholar 

  63. Suwa M, Nakano H, Radak Z, Kumagai S (2008) Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle. Metabolism 57(7):986–998. https://doi.org/10.1016/j.metabol.2008.02.017

    Article  CAS  PubMed  Google Scholar 

  64. Kang C, Ji LL (2013) Muscle immobilization and remobilization downregulates PGC-1alpha signaling and the mitochondrial biogenesis pathway. J Appl Physiol (1985) 115(11):1618–1625. https://doi.org/10.1152/japplphysiol.01354.2012

    Article  CAS  Google Scholar 

  65. Bocco BM, Louzada RA, Silvestre DH, Santos MC, Anne-Palmer E, Rangel IF, Abdalla S, Ferreira AC, Ribeiro MO, Gereben B, Carvalho DP, Bianco AC, Werneck-de-Castro JP (2016) Thyroid hormone activation by type 2 deiodinase mediates exercise-induced peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression in skeletal muscle. J Physiol 594(18):5255–5269. https://doi.org/10.1113/JP272440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16(14):1879–1886. https://doi.org/10.1096/fj.02-0367com

    Article  CAS  PubMed  Google Scholar 

  67. Mathai AS, Bonen A, Benton CR, Robinson DL, Graham TE (2008) Rapid exercise-induced changes in PGC-1alpha mRNA and protein in human skeletal muscle. J Appl Physiol (1985) 105(4):1098–1105. https://doi.org/10.1152/japplphysiol.00847.2007

    Article  CAS  Google Scholar 

  68. Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546(Pt 3):851–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I (2002) Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296(2):350–354

    Article  CAS  PubMed  Google Scholar 

  70. Terada S, Kawanaka K, Goto M, Shimokawa T, Tabata I (2005) Effects of high-intensity intermittent swimming on PGC-1alpha protein expression in rat skeletal muscle. Acta Physiol Scand 184(1):59–65. https://doi.org/10.1111/j.1365-201X.2005.01423.x

    Article  CAS  PubMed  Google Scholar 

  71. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839

    Article  CAS  PubMed  Google Scholar 

  72. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801. https://doi.org/10.1038/nature00904

    Article  CAS  PubMed  Google Scholar 

  73. Lira VA, Benton CR, Yan Z, Bonen A (2010) PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab 299(2):E145–E161. https://doi.org/10.1152/ajpendo.00755.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11(3):213–219. https://doi.org/10.1016/j.cmet.2010.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104(29):12017–12022. https://doi.org/10.1073/pnas.0705070104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18(1):39–51. https://doi.org/10.1096/fj.03-0610com

    Article  CAS  PubMed  Google Scholar 

  77. Stein TP, Wade CE (2005) Metabolic consequences of muscle disuse atrophy. J Nutr 135(7):1824S–1828S

    Article  CAS  PubMed  Google Scholar 

  78. Groennebaek T, Vissing K (2017) Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function. Front Physiol 8:713. https://doi.org/10.3389/fphys.2017.00713

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ogata T, Yamasaki Y (1997) Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. Anat Rec 248(2):214–223

    Article  CAS  PubMed  Google Scholar 

  80. Hood DA (2001) Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol (1985) 90(3):1137–1157. https://doi.org/10.1152/jappl.2001.90.3.1137

    Article  CAS  Google Scholar 

  81. Barbieri E, Sestili P, Vallorani L, Guescini M, Calcabrini C, Gioacchini AM, Annibalini G, Lucertini F, Piccoli G, Stocchi V (2013) Mitohormesis in muscle cells: a morphological, molecular, and proteomic approach. Muscles Ligaments Tendons J 3(4):254–266

    PubMed  Google Scholar 

  82. Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA (2000) Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol-Endoc M 279(5):E1039–E1044

    CAS  Google Scholar 

  83. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. New Engl J Med 350(7):664–671. https://doi.org/10.1056/NEJMoa031314

    Article  CAS  PubMed  Google Scholar 

  84. Rontoyanni VG, Lopez ON, Fankhauser GT, Cheema ZF, Rasmussen BB, Porter C (2017) Mitochondrial bioenergetics in the metabolic myopathy accompanying peripheral artery disease. Front Physiol 8 doi:ARTN 14110.3389/fphys.2017.00141

    Google Scholar 

  85. Carter HN, Chen CC, Hood DA (2015) Mitochondria, muscle health, and exercise with advancing age. Physiology (Bethesda) 30(3):208–223. https://doi.org/10.1152/physiol.00039.2014

    Article  CAS  Google Scholar 

  86. Dai DF, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS (2014) Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan 3:6. https://doi.org/10.1186/2046-2395-3-6

    Article  PubMed  PubMed Central  Google Scholar 

  87. Abadi A, Glover EI, Isfort RJ, Raha S, Safdar A, Yasuda N, Kaczor JJ, Melov S, Hubbard A, Qu X, Phillips SM, Tarnopolsky M (2009) Limb immobilization induces a coordinate down-regulation of mitochondrial and other metabolic pathways in men and women. PLoS One 4(8):e6518. https://doi.org/10.1371/journal.pone.0006518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gram M, Vigelso A, Yokota T, Hansen CN, Helge JW, Hey-Mogensen M, Dela F (2014) Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men. Exp Gerontol 58:269–278. https://doi.org/10.1016/j.exger.2014.08.013

    Article  PubMed  Google Scholar 

  89. Rooyackers OE, Adey DB, Ades PA, Nair KS (1996) Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci U S A 93(26):15364–15369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gehrig SM, Mihaylova V, Frese S, Mueller SM, Ligon-Auer M, Spengler CM, Petersen JA, Lundby C, Jung HH (2016) Altered skeletal muscle (mitochondrial) properties in patients with mitochondrial DNA single deletion myopathy. Orphanet J Rare Dis 11(1):105. https://doi.org/10.1186/s13023-016-0488-x

    Article  PubMed  PubMed Central  Google Scholar 

  91. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A 102(15):5618–5623. https://doi.org/10.1073/pnas.0501559102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Valero T (2014) Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Design 20(35):5507–5509. https://doi.org/10.2174/138161282035140911142118

    Article  CAS  Google Scholar 

  93. Moulin M, Ferreiro A (2017) Muscle redox disturbances and oxidative stress as pathomechanisms and therapeutic targets in early-onset myopathies. Semin Cell Dev Biol 64:213–223. https://doi.org/10.1016/j.semcdb.2016.08.3003

    Article  CAS  PubMed  Google Scholar 

  94. Siu PM (2009) Muscle apoptotic response to denervation, disuse, and aging. Med Sci Sports Exerc 41(10):1876–1886. https://doi.org/10.1249/MSS.0b013e3181a6470b

    Article  PubMed  Google Scholar 

  95. Kang C, Chung E, Diffee G, Ji LL (2013) Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1alpha. Exp Gerontol 48(11):1343–1350. https://doi.org/10.1016/j.exger.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  96. Clarkson PM, Byrnes WC, Gillisson E, Harper E (1987) Adaptation to exercise-induced muscle damage. Clin Sci (Lond) 73(4):383–386

    Article  CAS  Google Scholar 

  97. Clarkson PM, Hubal MJ (2002) Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 81(11 Suppl):S52–S69. https://doi.org/10.1097/01.PHM.0000029772.45258.43

    Article  PubMed  Google Scholar 

  98. Davies RC, Eston RG, Fulford J, Rowlands AV, Jones AM (2011) Muscle damage alters the metabolic response to dynamic exercise in humans: a 31P-MRS study. J Appl Physiol (1985) 111(3):782–790. https://doi.org/10.1152/japplphysiol.01021.2010

    Article  Google Scholar 

  99. Malm C (2001) Exercise-induced muscle damage and inflammation: fact or fiction? Acta Physiol Scand 171(3):233–239. https://doi.org/10.1046/j.1365-201x.2001.00825.x

    Article  CAS  PubMed  Google Scholar 

  100. Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM (2016) Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 116(9):1595–1625. https://doi.org/10.1007/s00421-016-3411-1

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kuipers H (1994) Exercise-induced muscle damage. Int J Sports Med 15(3):132–135. https://doi.org/10.1055/s-2007-1021034

    Article  CAS  PubMed  Google Scholar 

  102. Howatson G, van Someren KA (2008) The prevention and treatment of exercise-induced muscle damage. Sports Med 38(6):483–503

    Article  PubMed  Google Scholar 

  103. Roth SM, Martel GF, Ivey FM, Lemmer JT, Tracy BL, Hurlbut DE, Metter EJ, Hurley BF, Rogers MA (1999) Ultrastructural muscle damage in young vs. older men after high-volume, heavy-resistance strength training. J Appl Physiol 86(6):1833–1840

    Article  CAS  PubMed  Google Scholar 

  104. Nosaka K, Newton M (2002) Concentric or eccentric training effect on eccentric exercise-induced muscle damage. Med Sci Sports Exerc 34(1):63–69

    Article  PubMed  Google Scholar 

  105. Chen TC, Nosaka K, Sacco P (2007) Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. J Appl Physiol (1985) 102(3):992–999. https://doi.org/10.1152/japplphysiol.00425.2006

    Article  Google Scholar 

  106. Nosaka K, Newton M (2002) Difference in the magnitude of muscle damage between maximal and submaximal eccentric loading. J Strength Cond Res 16(2):202–208

    PubMed  Google Scholar 

  107. Rowlands AV, Eston RG, Tilzey C (2001) Effect of stride length manipulation on symptoms of exercise-induced muscle damage and the repeated bout effect. J Sports Sci 19(5):333–340. https://doi.org/10.1080/02640410152006108

    Article  CAS  PubMed  Google Scholar 

  108. Friden J, Lieber RL (2001) Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand 171(3):321–326. https://doi.org/10.1046/j.1365-201x.2001.00834.x

    Article  CAS  PubMed  Google Scholar 

  109. Miles MP, Clarkson PM (1994) Exercise-induced muscle pain, soreness, and cramps. J Sports Med Phys Fitness 34(3):203–216

    CAS  PubMed  Google Scholar 

  110. Chrismas BCR, Taylor L, Siegler JC, Midgley AW (2017) A reduction in maximal incremental exercise test duration 48 h post downhill run is associated with muscle damage derived exercise induced pain. Front Physiol 8 doi:ARTN 13510.3389/fphys.2017.00135

    Google Scholar 

  111. Balnave CD, Thompson MW (1993) Effect of training on eccentric exercise-induced muscle damage. J Appl Physiol (1985) 75(4):1545–1551. https://doi.org/10.1152/jappl.1993.75.4.1545

    Article  CAS  Google Scholar 

  112. Brown SJ, Child RB, Day SH, Donnelly AE (1997) Indices of skeletal muscle damage and connective tissue breakdown following eccentric muscle contractions. Eur J Appl Physiol Occup Physiol 75(4):369–374. https://doi.org/10.1007/s004210050174

    Article  CAS  PubMed  Google Scholar 

  113. Stupka N, Tarnopolsky MA, Yardley NJ, Phillips SM (2001) Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol (1985) 91(4):1669–1678. https://doi.org/10.1152/jappl.2001.91.4.1669

    Article  CAS  Google Scholar 

  114. Tofas T, Jamurtas AZ, Fatouros I, Nikolaidis MG, Koutedakis Y, Sinouris EA, Papageorgakopoulou N, Theocharis DA (2008) Plyometric exercise increases serum indices of muscle damage and collagen breakdown. J Strength Cond Res 22(2):490–496. https://doi.org/10.1519/JSC.0b013e31816605a0

    Article  PubMed  Google Scholar 

  115. Ahmadi S, Sinclair PJ, Foroughi N, Davis GM (2007) Electromyographic activity of the biceps brachii after exercise-induced muscle damage. J Sports Sci Med 6(4):461–470

    PubMed  PubMed Central  Google Scholar 

  116. Felici F (2006) Neuromuscular responses to exercise investigated through surface EMG. J Electromyogr Kinesiol 16(6):578–585. https://doi.org/10.1016/j.jelekin.2006.08.002

    Article  PubMed  Google Scholar 

  117. Roth SM, Martel GF, Ivey FM, Lemmer JT, Metter EJ, Hurley BF, Rogers MA (2000) High-volume, heavy-resistance strength training and muscle damage in young and older women. J Appl Physiol 88(3):1112–1118

    Article  CAS  PubMed  Google Scholar 

  118. Newham DJ, McPhail G, Mills KR, Edwards RH (1983) Ultrastructural changes after concentric and eccentric contractions of human muscle. J Neurol Sci 61(1):109–122

    Article  CAS  PubMed  Google Scholar 

  119. Friden J, Lieber RL (1992) Structural and mechanical basis of exercise-induced muscle injury. Med Sci Sports Exerc 24(5):521–530

    Article  CAS  PubMed  Google Scholar 

  120. Friden J (1984) Muscle soreness after exercise: implications of morphological changes. Int J Sports Med 5(2):57–66

    Article  CAS  PubMed  Google Scholar 

  121. Van Koevering M, Nissen S (1992) Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo. Am J Phys 262(1 Pt 1):E27–E31. https://doi.org/10.1152/ajpendo.1992.262.1.E27

    Article  Google Scholar 

  122. Bloomer RJ, Goldfarb AH (2003) Can nutritional supplements reduce exercise-induced skeletal muscle damage? Strength Cond J 25(5):30–37. https://doi.org/10.1519/00126548-200310000-00005

    Article  Google Scholar 

  123. Bougie JD (1997) Management for delayed-onset muscular soreness: a review of the literature. J Sport Chiropr Reh 11(1):1–10

    Google Scholar 

  124. Lambert MI, Marcus P, Burgess T, Noakes TD (2002) Electro-membrane microcurrent therapy reduces signs and symptoms of muscle damage. Med Sci Sports Exerc 34(4):602–607. https://doi.org/10.1097/00005768-200204000-00007

    Article  PubMed  Google Scholar 

  125. Zainuddin Z, Sacco P, Newton M, Nosaka K (2006) Light concentric exercise has a temporarily analgesic effect on delayed-onset muscle soreness, but no effect on recovery from eccentric exercise. Appl Physiol Nutr Me 31(2):126–134. https://doi.org/10.1139/H05-010

    Article  Google Scholar 

  126. Martin V, Millet GY, Lattier G, Perrod L (2004) Effects of recovery modes after knee extensor muscles eccentric contractions. Med Sci Sports Exerc 36(11):1907–1915

    Article  PubMed  Google Scholar 

  127. Tiidus PM (1999) Comment on P.M. Tiidus, “Massage and ultrasound as therapeutic modalities in exercise-induced muscle damage”. Can J Appl Physiol 24(3):267–278 Response to comment from Mr. D.H. Jones. Canadian Journal of Applied Physiology-Revue Canadienne De Physiologie Appliquee 24 (6):Vii–Viii

    Article  CAS  PubMed  Google Scholar 

Download references

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, L., Meng, X., Zhang, Z., Wang, T. (2018). Physical Exercise for Muscle Atrophy. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_24

Download citation

Publish with us

Policies and ethics