Skip to main content

Nutritional Considerations in Preventing Muscle Atrophy

  • Chapter
  • First Online:
Book cover Muscle Atrophy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1088))

Abstract

Muscle atrophy may occur under different circumstances throughout a person’s life. These conditions include periods of immobilization of a limb or of the whole body and aging accompanied by the onset of sarcopenia. Muscle mass is reduced as a result of decreased protein synthesis or increased protein degradation. Most studies aim to prevent the degradation of muscle proteins, but the way in which protein synthesis can be stimulated is often neglected. This study will provide an up-to-date review regarding nutritional considerations and resistance exercise countermeasures in the prevention of muscle mass loss and recovery of muscle mass in muscle atrophy secondary to immobilization or in sarcopenic obesity. We do not address muscle atrophy in disease states associated with inflammation (rheumatoid arthritis, COPD, cancer cachexia, AIDS, burns, sepsis, and uremia) which are governed by particular mechanisms of muscle loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grosset JF, Onambele-Pearson G (2008) Effect of foot and ankle immobilization on leg and thigh muscles’ volume and morphology: a case study using magnetic resonance imaging. Anat Rec 291(12):1673–1683. https://doi.org/10.1002/ar.20759

    Article  Google Scholar 

  2. Haruna Y, Suzuki Y, Kawakubo K, Yanagibori R, Gunji A (1994) Decremental reset in basal metabolism during 20-days bed rest. Acta Physiol Scand Suppl 616:43–49

    CAS  PubMed  Google Scholar 

  3. Dirks ML, Wall BT, van de Valk B, Holloway TM, Holloway GP, Chabowski A, Goossens GH, van Loon LJ (2016) One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation. Diabetes 65(10):2862–2875. https://doi.org/10.2337/db15-1661

    Article  CAS  PubMed  Google Scholar 

  4. Brooks N, Cloutier GJ, Cadena SM, Layne JE, Nelsen CA, Freed AM, Roubenoff R, Castaneda-Sceppa C (2008) Resistance training and timed essential amino acids protect against the loss of muscle mass and strength during 28 days of bed rest and energy deficit. J Appl Physiol 105(1):241–248. https://doi.org/10.1152/japplphysiol.01346.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. von Haehling S, Morley JE, Anker SD (2012) From muscle wasting to sarcopenia and myopenia: update 2012. J Cachexia Sarcopenia Muscle 3(4):213–217. https://doi.org/10.1007/s13539-012-0089-z

    Article  Google Scholar 

  6. Keller K (2018) Sarcopenia. Wien Med Wochenschr. https://doi.org/10.1007/s10354-018-0618-2

  7. Wall BT, Dirks ML, Snijders T, van Dijk JW, Fritsch M, Verdijk LB, van Loon LJ (2016) Short-term muscle disuse lowers myofibrillar protein synthesis rates and induces anabolic resistance to protein ingestion. Am J Phys Endocrinol Metab 310(2):E137–E147. https://doi.org/10.1152/ajpendo.00227.2015

    Article  Google Scholar 

  8. Dirks ML, Wall BT, van Loon LJC (2017) Interventional strategies to combat muscle disuse atrophy in humans: focus on neuromuscular electrical stimulation and dietary protein. Journal of applied physiology:jap009852016. https://doi.org/10.1152/japplphysiol.00985.2016

    Article  PubMed  Google Scholar 

  9. Wall BT, Dirks ML, Snijders T, Senden JM, Dolmans J, van Loon LJ (2014) Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol 210(3):600–611. https://doi.org/10.1111/apha.12190

    Article  CAS  Google Scholar 

  10. Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45(10):2200–2208. https://doi.org/10.1016/j.biocel.2013.06.011

    Article  CAS  PubMed  Google Scholar 

  11. Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ (2016) Human skeletal muscle disuse atrophy: effects on muscle protein synthesis, breakdown, and insulin resistance-a qualitative review. Front Physiol 7:361. https://doi.org/10.3389/fphys.2016.00361

    Article  PubMed  PubMed Central  Google Scholar 

  12. Topp R, Ditmyer M, King K, Doherty K, Hornyak J 3rd (2002) The effect of bed rest and potential of prehabilitation on patients in the intensive care unit. AACN Clin Issues 13(2):263–276

    Article  PubMed  Google Scholar 

  13. Psatha M, Wu Z, Gammie FM, Ratkevicius A, Wackerhage H, Lee JH, Redpath TW, Gilbert FJ, Ashcroft GP, Meakin JR, Aspden RM (2012) A longitudinal MRI study of muscle atrophy during lower leg immobilization following ankle fracture. J Magn Resonan Imaging 35(3):686–695. https://doi.org/10.1002/jmri.22864

    Article  Google Scholar 

  14. Biolo G, Agostini F, Simunic B, Sturma M, Torelli L, Preiser JC, Deby-Dupont G, Magni P, Strollo F, di Prampero P, Guarnieri G, Mekjavic IB, Pisot R, Narici MV (2008) Positive energy balance is associated with accelerated muscle atrophy and increased erythrocyte glutathione turnover during 5 wk of bed rest. Am J Clin Nutr 88(4):950–958

    Article  CAS  PubMed  Google Scholar 

  15. Pasiakos SM, Vislocky LM, Carbone JW, Altieri N, Konopelski K, Freake HC, Anderson JM, Ferrando AA, Wolfe RR, Rodriguez NR (2010) Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. J Nutr 140(4):745–751. https://doi.org/10.3945/jn.109.118372

    Article  CAS  PubMed  Google Scholar 

  16. Trappe TA, Burd NA, Louis ES, Lee GA, Trappe SW (2007) Influence of concurrent exercise or nutrition countermeasures on thigh and calf muscle size and function during 60 days of bed rest in women. Acta Physiol 191(2):147–159. https://doi.org/10.1111/j.1748-1716.2007.01728.x

    Article  CAS  Google Scholar 

  17. Wall BT, van Loon LJ (2013) Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev 71(4):195–208. https://doi.org/10.1111/nure.12019

    Article  PubMed  Google Scholar 

  18. Bohe J, Low A, Wolfe RR, Rennie MJ (2003) Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol 552(Pt 1):315–324. https://doi.org/10.1113/jphysiol.2003.050674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dirks ML, Wall BT, Nilwik R, Weerts DH, Verdijk LB, van Loon LJ (2014) Skeletal muscle disuse atrophy is not attenuated by dietary protein supplementation in healthy older men. J Nutr 144(8):1196–1203. https://doi.org/10.3945/jn.114.194217

    Article  CAS  PubMed  Google Scholar 

  20. Dardevet D, Remond D, Peyron MA, Papet I, Savary-Auzeloux I, Mosoni L (2012) Muscle wasting and resistance of muscle anabolism: the “anabolic threshold concept” for adapted nutritional strategies during sarcopenia. TheScientificWorldJOURNAL 2012:269531. https://doi.org/10.1100/2012/269531

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stuart CA, Shangraw RE, Peters EJ, Wolfe RR (1990) Effect of dietary protein on bed-rest-related changes in whole-body-protein synthesis. Am J Clin Nutr 52(3):509–514

    Article  CAS  PubMed  Google Scholar 

  22. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR (2003) Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78(2):250–258

    Article  CAS  PubMed  Google Scholar 

  23. Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ (2010) Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids 38(5):1533–1539. https://doi.org/10.1007/s00726-009-0377-x

    Article  CAS  PubMed  Google Scholar 

  24. Drummond MJ, Glynn EL, Fry CS, Timmerman KL, Volpi E, Rasmussen BB (2010) An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle. Am J Phys Endocrinol Metab 298(5):E1011–E1018. https://doi.org/10.1152/ajpendo.00690.2009

    Article  CAS  Google Scholar 

  25. Anthony JC, Lang CH, Crozier SJ, Anthony TG, MacLean DA, Kimball SR, Jefferson LS (2002) Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am J Phys Endocrinol Metab 282(5):E1092–E1101. https://doi.org/10.1152/ajpendo.00208.2001

    Article  CAS  Google Scholar 

  26. Drummond MJ, Reidy PT, Baird LM, Dalley BK, Howard MT (2017) Leucine differentially regulates gene-specific translation in mouse skeletal muscle. J Nutr 147(9):1616–1623. https://doi.org/10.3945/jn.117.251181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paddon-Jones D, Sheffield-Moore M, Urban RJ, Sanford AP, Aarsland A, Wolfe RR, Ferrando AA (2004) Essential amino acid and carbohydrate supplementation ameliorates muscle protein loss in humans during 28 days bedrest. J Clin Endocrinol Metab 89(9):4351–4358. https://doi.org/10.1210/jc.2003-032159

    Article  CAS  PubMed  Google Scholar 

  28. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2005) Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr 82(5):1065–1073

    Article  CAS  PubMed  Google Scholar 

  29. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2006) A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Phys Endocrinol Metab 291(2):E381–E387. https://doi.org/10.1152/ajpendo.00488.2005

    Article  CAS  Google Scholar 

  30. Brooks NE, Cadena SM, Vannier E, Cloutier G, Carambula S, Myburgh KH, Roubenoff R, Castaneda-Sceppa C (2010) Effects of resistance exercise combined with essential amino acid supplementation and energy deficit on markers of skeletal muscle atrophy and regeneration during bed rest and active recovery. Muscle Nerve 42(6):927–935. https://doi.org/10.1002/mus.21780

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E, Rasmussen BB (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Phys Endocrinol Metab 294(2):E392–E400. https://doi.org/10.1152/ajpendo.00582.2007

    Article  CAS  Google Scholar 

  32. Louard RJ, Barrett EJ, Gelfand RA (1990) Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man. Clin Sci 79(5):457–466

    Article  CAS  Google Scholar 

  33. Wolfe RR (2017) Branched-chain amino acids and muscle protein synthesis in humans: myth or reality? J Int Soc Sports Nutr 14:30. https://doi.org/10.1186/s12970-017-0184-9

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stein TP, Blanc S (2011) Does protein supplementation prevent muscle disuse atrophy and loss of strength? Crit Rev Food Sci Nutr 51(9):828–834. https://doi.org/10.1080/10408398.2010.482679

    Article  CAS  PubMed  Google Scholar 

  35. Sundstrom Rehal M, Liebau F, Tjader I, Norberg A, Rooyackers O, Wernerman J (2017) A supplemental intravenous amino acid infusion sustains a positive protein balance for 24 hours in critically ill patients. Crit Care 21(1):298. https://doi.org/10.1186/s13054-017-1892-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Martin V, Ratel S, Siracusa J, Le Ruyet P, Savary-Auzeloux I, Combaret L, Guillet C, Dardevet D (2013) Whey proteins are more efficient than casein in the recovery of muscle functional properties following a casting induced muscle atrophy. PLoS One 8(9):e75408. https://doi.org/10.1371/journal.pone.0075408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kimball SR, Jefferson LS (2006) Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr 136(1 Suppl):227S–231S

    Article  CAS  PubMed  Google Scholar 

  38. Maki T, Yamamoto D, Nakanishi S, Iida K, Iguchi G, Takahashi Y, Kaji H, Chihara K, Okimura Y (2012) Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats. Nutr Res 32(9):676–683. https://doi.org/10.1016/j.nutres.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  39. De Luca A, Pierno S, Camerino DC (2015) Taurine: the appeal of a safe amino acid for skeletal muscle disorders. J Transl Med 13:243. https://doi.org/10.1186/s12967-015-0610-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghandforoush-Sattari M, Mashayekhi S, Krishna CV, Thompson JP, Routledge PA (2010) Pharmacokinetics of oral taurine in healthy volunteers. J Amino Acids 2010:346237. https://doi.org/10.4061/2010/346237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khalil RM, Abdo WS, Saad A, Khedr EG (2017) Muscle proteolytic system modulation through the effect of taurine on mice bearing muscular atrophy. Mol Cell Biochem. https://doi.org/10.1007/s11010-017-3240-5

    Article  PubMed  Google Scholar 

  42. Dutt V, Saini V, Gupta P, Kaur N, Bala M, Gujar R, Grewal A, Gupta S, Dua A, Mittal A (2018) S-allyl cysteine inhibits TNFalpha-induced skeletal muscle wasting through suppressing proteolysis and expression of inflammatory molecules. Biochim Biophys Acta 1862(4):895–906. https://doi.org/10.1016/j.bbagen.2017.12.015

    Article  CAS  Google Scholar 

  43. Breuille D, Bechereau F, Buffiere C, Denis P, Pouyet C, Obled C (2006) Beneficial effect of amino acid supplementation, especially cysteine, on body nitrogen economy in septic rats. Clin Nutr 25(4):634–642. https://doi.org/10.1016/j.clnu.2005.11.009

    Article  CAS  PubMed  Google Scholar 

  44. Derave W, Eijnde BO, Hespel P (2003) Creatine supplementation in health and disease: what is the evidence for long-term efficacy? Mol Cell Biochem 244(1-2):49–55

    Article  CAS  PubMed  Google Scholar 

  45. Backx EMP, Hangelbroek R, Snijders T, Verscheijden ML, Verdijk LB, de Groot L, van Loon LJC (2017) Creatine loading does not preserve muscle mass or strength during leg immobilization in healthy, young males: a randomized controlled trial. Sports Med 47(8):1661–1671. https://doi.org/10.1007/s40279-016-0670-2

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chilibeck PD, Kaviani M, Candow DG, Zello GA (2017) Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: a meta-analysis. Open Access J Sports Med 8:213–226. https://doi.org/10.2147/OAJSM.S123529

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hespel P, Op't Eijnde B, Van Leemputte M, Urso B, Greenhaff PL, Labarque V, Dymarkowski S, Van Hecke P, Richter EA (2001) Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol 536(Pt 2):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102(6):2389–2397. https://doi.org/10.1152/japplphysiol.01202.2006

    Article  CAS  PubMed  Google Scholar 

  49. Pellegrino MA, Desaphy JF, Brocca L, Pierno S, Camerino DC, Bottinelli R (2011) Redox homeostasis, oxidative stress and disuse muscle atrophy. J Physiol 589(Pt 9):2147–2160. https://doi.org/10.1113/jphysiol.2010.203232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cornelli U (2009) Antioxidant use in nutraceuticals. Clin Dermatol 27(2):175–194. https://doi.org/10.1016/j.clindermatol.2008.01.010

    Article  PubMed  Google Scholar 

  51. Kondo H, Miura M, Itokawa Y (1991) Oxidative stress in skeletal muscle atrophied by immobilization. Acta Physiol Scand 142(4):527–528. https://doi.org/10.1111/j.1748-1716.1991.tb09191.x

    Article  CAS  PubMed  Google Scholar 

  52. Appell HJ, Duarte JA, Soares JM (1997) Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy. Int J Sports Med 18(3):157–160

    Article  CAS  PubMed  Google Scholar 

  53. Servais S, Letexier D, Favier R, Duchamp C, Desplanches D (2007) Prevention of unloading-induced atrophy by vitamin E supplementation: links between oxidative stress and soleus muscle proteolysis? Free Radic Biol Med 42(5):627–635. https://doi.org/10.1016/j.freeradbiomed.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  54. Koesterer TJ, Dodd SL, Powers S (2002) Increased antioxidant capacity does not attenuate muscle atrophy caused by unweighting. J Appl Physiol 93(6):1959–1965. https://doi.org/10.1152/japplphysiol.00511.2002

    Article  CAS  PubMed  Google Scholar 

  55. Kanazashi M, Tanaka M, Murakami S, Kondo H, Nagatomo F, Ishihara A, Roy RR, Fujino H (2014) Amelioration of capillary regression and atrophy of the soleus muscle in hindlimb-unloaded rats by astaxanthin supplementation and intermittent loading. Exp Physiol 99(8):1065–1077. https://doi.org/10.1113/expphysiol.2014.079988

    Article  CAS  PubMed  Google Scholar 

  56. Ogawa M, Kariya Y, Kitakaze T, Yamaji R, Harada N, Sakamoto T, Hosotani K, Nakano Y, Inui H (2013) The preventive effect of beta-carotene on denervation-induced soleus muscle atrophy in mice. Br J Nutr 109(8):1349–1358. https://doi.org/10.1017/S0007114512003297

    Article  CAS  PubMed  Google Scholar 

  57. Bosutti A, Degens H (2015) The impact of resveratrol and hydrogen peroxide on muscle cell plasticity shows a dose-dependent interaction. Sci Rep 5:8093. https://doi.org/10.1038/srep08093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bennett BT, Mohamed JS, Alway SE (2013) Effects of resveratrol on the recovery of muscle mass following disuse in the plantaris muscle of aged rats. PLoS One 8(12):e83518. https://doi.org/10.1371/journal.pone.0083518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Momken I, Stevens L, Bergouignan A, Desplanches D, Rudwill F, Chery I, Zahariev A, Zahn S, Stein TP, Sebedio JL, Pujos-Guillot E, Falempin M, Simon C, Coxam V, Andrianjafiniony T, Gauquelin-Koch G, Picquet F, Blanc S (2011) Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB journal : official publication of the FASEB J 25(10):3646–3660. https://doi.org/10.1096/fj.10-177295

    Article  CAS  Google Scholar 

  60. Cabrera C, Artacho R, Gimenez R (2006) Beneficial effects of green tea – a review. J Am Coll Nutr 25(2):79–99

    Article  CAS  PubMed  Google Scholar 

  61. Suzuki T, Pervin M, Goto S, Isemura M, Nakamura Y (2016) Beneficial effects of tea and the green tea catechin epigallocatechin-3-gallate on obesity. Molecules 21(10). https://doi.org/10.3390/molecules21101305

    Article  PubMed Central  Google Scholar 

  62. Meador BM, Mirza KA, Tian M, Skelding MB, Reaves LA, Edens NK, Tisdale MJ, Pereira SL (2015) The green tea polyphenol epigallocatechin-3-gallate (EGCg) attenuates skeletal muscle atrophy in a rat model of sarcopenia. J Frailty Aging 4(4):209–215. https://doi.org/10.14283/jfa.2015.58

    Article  CAS  PubMed  Google Scholar 

  63. Ota N, Soga S, Haramizu S, Yokoi Y, Hase T, Murase T (2011) Tea catechins prevent contractile dysfunction in unloaded murine soleus muscle: a pilot study. Nutrition 27(9):955–959. https://doi.org/10.1016/j.nut.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  64. Alway SE, Bennett BT, Wilson JC, Sperringer J, Mohamed JS, Edens NK, Pereira SL (2015) Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats. J Appl Physiol 118(3):319–330. https://doi.org/10.1152/japplphysiol.00674.2014

    Article  CAS  PubMed  Google Scholar 

  65. Kim YS, Lee Y, Chung YS, Lee DJ, Joo NS, Hong D, Song G, Kim HJ, Choi YJ, Kim KM (2012) Prevalence of sarcopenia and sarcopenic obesity in the Korean population based on the Fourth Korean National Health and Nutritional Examination Surveys. J Gerontol A Biol Sci Med Sci 67(10):1107–1113. https://doi.org/10.1093/gerona/gls071

    Article  PubMed  Google Scholar 

  66. Prado CM, Wells JC, Smith SR, Stephan BC, Siervo M (2012) Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr 31(5):583–601. https://doi.org/10.1016/j.clnu.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  67. Johnson Stoklossa CA, Sharma AM, Forhan M, Siervo M, Padwal RS, Prado CM (2017) Prevalence of sarcopenic obesity in adults with class II/III obesity using different diagnostic criteria. J Nutr Metab 2017:7307618. https://doi.org/10.1155/2017/7307618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marcell TJ (2003) Sarcopenia: causes, consequences, and preventions. J Gerontol A Biol Sci Med Sci 58(10):M911–M916

    Article  PubMed  Google Scholar 

  69. Thomas DR (2007) Loss of skeletal muscle mass in aging: examining the relationship of starvation, sarcopenia and cachexia. Clin Nutr 26(4):389–399. https://doi.org/10.1016/j.clnu.2007.03.008

    Article  PubMed  Google Scholar 

  70. Rosenberg IH (2011) Sarcopenia: origins and clinical relevance. Clin Geriatr Med 27(3):337–339. https://doi.org/10.1016/j.cger.2011.03.003

    Article  PubMed  Google Scholar 

  71. Ogden CL, Carroll MD, Kit BK, Flegal KM (2014) Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 311(8):806–814. https://doi.org/10.1001/jama.2014.732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Doherty TJ, Vandervoort AA, Brown WF (1993) Effects of ageing on the motor unit: a brief review. Can J Appl Physiol = Revue canadienne de physiologie appliquee 18(4):331–358

    CAS  PubMed  Google Scholar 

  73. Campbell MJ, McComas AJ, Petito F (1973) Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry 36(2):174–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147(8):755–763

    Article  CAS  PubMed  Google Scholar 

  75. Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50(5):889–896

    Article  PubMed  Google Scholar 

  76. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB, Health ABCSI (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 51(11):1602–1609

    Article  PubMed  Google Scholar 

  77. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, Corsi AM, Rantanen T, Guralnik JM, Ferrucci L (2003) Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol 95(5):1851–1860. https://doi.org/10.1152/japplphysiol.00246.2003

    Article  PubMed  Google Scholar 

  78. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61(10):1059–1064

    Article  PubMed  Google Scholar 

  79. Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R, Fiatarone Singh MA (2001) Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci 56(5):B209–B217

    Article  CAS  PubMed  Google Scholar 

  80. Larsson L, Li X, Frontera WR (1997) Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Phys 272(2 Pt 1):C638–C649. https://doi.org/10.1152/ajpcell.1997.272.2.C638

    Article  CAS  Google Scholar 

  81. Delbono O (2003) Neural control of aging skeletal muscle. Aging Cell 2(1):21–29

    Article  CAS  PubMed  Google Scholar 

  82. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB (2001) Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol 90(6):2157–2165. https://doi.org/10.1152/jappl.2001.90.6.2157

    Article  CAS  PubMed  Google Scholar 

  83. Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB (2006) Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 61(1):72–77

    Article  PubMed  Google Scholar 

  84. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L (2008) Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 11(6):693–700. https://doi.org/10.1097/MCO.0b013e328312c37d

    Article  PubMed  PubMed Central  Google Scholar 

  85. Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, Simonsick EM, Harris TB (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 60(3):324–333

    Article  PubMed  Google Scholar 

  86. Schrager MA, Metter EJ, Simonsick E, Ble A, Bandinelli S, Lauretani F, Ferrucci L (2007) Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol 102(3):919–925. https://doi.org/10.1152/japplphysiol.00627.2006

    Article  PubMed  Google Scholar 

  87. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older P (2010) Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39(4):412–423. https://doi.org/10.1093/ageing/afq034

    Article  PubMed  PubMed Central  Google Scholar 

  88. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69(5):547–558. https://doi.org/10.1093/gerona/glu010

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cawthon PM, Peters KW, Shardell MD, McLean RR, Dam TT, Kenny AM, Fragala MS, Harris TB, Kiel DP, Guralnik JM, Ferrucci L, Kritchevsky SB, Vassileva MT, Studenski SA, Alley DE (2014) Cutpoints for low appendicular lean mass that identify older adults with clinically significant weakness. J Gerontol A Biol Sci Med Sci 69(5):567–575. https://doi.org/10.1093/gerona/glu023

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kim KM, Jang HC, Lim S (2016) Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J Inter Med 31(4):643–650. https://doi.org/10.3904/kjim.2016.015

    Article  Google Scholar 

  91. Choi KM (2016) Sarcopenia and sarcopenic obesity. Korean J Inter Med 31(6):1054–1060. https://doi.org/10.3904/kjim.2016.193

    Article  Google Scholar 

  92. Villareal DT, Banks M, Siener C, Sinacore DR, Klein S (2004) Physical frailty and body composition in obese elderly men and women. Obes Res 12(6):913–920. https://doi.org/10.1038/oby.2004.111

    Article  PubMed  Google Scholar 

  93. Zizza CA, Herring A, Stevens J, Popkin BM (2002) Obesity affects nursing-care facility admission among whites but not blacks. Obes Res 10(8):816–823. https://doi.org/10.1038/oby.2002.110

    Article  PubMed  Google Scholar 

  94. Rantanen T, Penninx BW, Masaki K, Lintunen T, Foley D, Guralnik JM (2000) Depressed mood and body mass index as predictors of muscle strength decline in old men. J Am Geriatr Soc 48(6):613–617

    Article  CAS  PubMed  Google Scholar 

  95. Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE (2004) Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res 12(12):1995–2004. https://doi.org/10.1038/oby.2004.250

    Article  PubMed  Google Scholar 

  96. Stenholm S, Alley D, Bandinelli S, Griswold ME, Koskinen S, Rantanen T, Guralnik JM, Ferrucci L (2009) The effect of obesity combined with low muscle strength on decline in mobility in older persons: results from the InCHIANTI study. Int J Obes 33(6):635–644. https://doi.org/10.1038/ijo.2009.62

    Article  CAS  Google Scholar 

  97. Stenholm S, Rantanen T, Heliovaara M, Koskinen S (2008) The mediating role of C-reactive protein and handgrip strength between obesity and walking limitation. J Am Geriatr Soc 56(3):462–469. https://doi.org/10.1111/j.1532-5415.2007.01567.x

    Article  PubMed  Google Scholar 

  98. Droyvold WB, Nilsen TI, Kruger O, Holmen TL, Krokstad S, Midthjell K, Holmen J (2006) Change in height, weight and body mass index: Longitudinal data from the HUNT Study in Norway. Int J Obes 30(6):935–939. https://doi.org/10.1038/sj.ijo.0803178

    Article  CAS  Google Scholar 

  99. Ding J, Kritchevsky SB, Newman AB, Taaffe DR, Nicklas BJ, Visser M, Lee JS, Nevitt M, Tylavsky FA, Rubin SM, Pahor M, Harris TB, Health ABCS (2007) Effects of birth cohort and age on body composition in a sample of community-based elderly. Am J Clin Nutr 85(2):405–410

    Article  CAS  PubMed  Google Scholar 

  100. Bassey EJ (1998) Longitudinal changes in selected physical capabilities: muscle strength, flexibility and body size. Age Ageing 27(Suppl 3):12–16

    Article  PubMed  Google Scholar 

  101. Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R (2000) Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol 88(4):1321–1326. https://doi.org/10.1152/jappl.2000.88.4.1321

    Article  CAS  PubMed  Google Scholar 

  102. Horber FF, Gruber B, Thomi F, Jensen EX, Jaeger P (1997) Effect of sex and age on bone mass, body composition and fuel metabolism in humans. Nutrition 13(6):524–534

    Article  CAS  PubMed  Google Scholar 

  103. Beaufrere B, Morio B (2000) Fat and protein redistribution with aging: metabolic considerations. Eur J Clin Nutr 54(Suppl 3):S48–S53

    Article  PubMed  Google Scholar 

  104. Roubenoff R (2003) Sarcopenia: effects on body composition and function. J Gerontol A Biol Sci Med Sci 58(11):1012–1017

    Article  PubMed  Google Scholar 

  105. Duvigneaud N, Matton L, Wijndaele K, Deriemaeker P, Lefevre J, Philippaerts R, Thomis M, Delecluse C, Duquet W (2008) Relationship of obesity with physical activity, aerobic fitness and muscle strength in Flemish adults. J Sports Med Phys Fitness 48(2):201–210

    CAS  PubMed  Google Scholar 

  106. Vincent HK, Raiser SN, Vincent KR (2012) The aging musculoskeletal system and obesity-related considerations with exercise. Ageing Res Rev 11(3):361–373. https://doi.org/10.1016/j.arr.2012.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Goisser S, Kemmler W, Porzel S, Volkert D, Sieber CC, Bollheimer LC, Freiberger E (2015) Sarcopenic obesity and complex interventions with nutrition and exercise in community-dwelling older persons – -a narrative review. Clin Interv Aging 10:1267–1282. https://doi.org/10.2147/CIA.S82454

    Article  PubMed  PubMed Central  Google Scholar 

  108. Denison HJ, Cooper C, Sayer AA, Robinson SM (2015) Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin Interv Aging 10:859–869. https://doi.org/10.2147/CIA.S55842

    Article  PubMed  PubMed Central  Google Scholar 

  109. Fantuzzi G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115(5):911–919.; ; quiz 920. https://doi.org/10.1016/j.jaci.2005.02.023

    Article  CAS  PubMed  Google Scholar 

  110. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S (2007) Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56(4):1010–1013. https://doi.org/10.2337/db06-1656

    Article  CAS  PubMed  Google Scholar 

  111. Hung J, McQuillan BM, Thompson PL, Beilby JP (2008) Circulating adiponectin levels associate with inflammatory markers, insulin resistance and metabolic syndrome independent of obesity. Int J Obes 32(5):772–779. https://doi.org/10.1038/sj.ijo.0803793

    Article  CAS  Google Scholar 

  112. Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L, Palla SL, Ambrosius WT, Tracy RP, Pahor M (2005) Sarcopenia, obesity, and inflammation – results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors study. Am J Clin Nutr 82(2):428–434

    Article  CAS  PubMed  Google Scholar 

  113. Barbieri M, Ferrucci L, Corsi AM, Macchi C, Lauretani F, Bonafe M, Olivieri F, Giovagnetti S, Franceschi C, Paolisso G (2003) Is chronic inflammation a determinant of blood pressure in the elderly? Am J Hypertens 16(7):537–543

    Article  PubMed  Google Scholar 

  114. Roth SM, Metter EJ, Ling S, Ferrucci L (2006) Inflammatory factors in age-related muscle wasting. Curr Opin Rheumatol 18(6):625–630. https://doi.org/10.1097/01.bor.0000245722.10136.6d

    Article  CAS  PubMed  Google Scholar 

  115. Sakuma K, Yamaguchi A (2013) Sarcopenic obesity and endocrinal adaptation with age. Int J Endocrinol 2013:204164. https://doi.org/10.1155/2013/204164

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yang CW, Li CI, Li TC, Liu CS, Lin CH, Lin WY, Lin CC (2015) Association of sarcopenic obesity with higher serum high-sensitivity C-reactive protein levels in Chinese older males – a community-based study (Taichung Community Health Study-Elderly, TCHS-E). PLoS One 10(7):e0132908. https://doi.org/10.1371/journal.pone.0132908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dyck DJ, Heigenhauser GJ, Bruce CR (2006) The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol 186(1):5–16. https://doi.org/10.1111/j.1748-1716.2005.01502.x

    Article  CAS  Google Scholar 

  118. Stenholm S, Metter EJ, Roth GS, Ingram DK, Mattison JA, Taub DD, Ferrucci L (2011) Relationship between plasma ghrelin, insulin, leptin, interleukin 6, adiponectin, testosterone and longevity in the Baltimore Longitudinal Study of Aging. Aging Clin Exp Res 23(2):153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Arner P, Ryden M (2015) Fatty acids, obesity and insulin resistance. Obes Facts 8(2):147–155. https://doi.org/10.1159/000381224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nomura T, Ikeda Y, Nakao S, Ito K, Ishida K, Suehiro T, Hashimoto K (2007) Muscle strength is a marker of insulin resistance in patients with type 2 diabetes: a pilot study. Endocr J 54(5):791–796

    Article  CAS  PubMed  Google Scholar 

  121. Abbatecola AM, Ferrucci L, Ceda G, Russo CR, Lauretani F, Bandinelli S, Barbieri M, Valenti G, Paolisso G (2005) Insulin resistance and muscle strength in older persons. J Gerontol A Biol Sci Med Sci 60(10):1278–1282

    Article  PubMed  Google Scholar 

  122. Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C, de Rekeneire N, Harris TB, Schwartz AV, Tylavsky FA, Cho YW, Newman AB, Health A, Body Composition S (2007) Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care 30(6):1507–1512. https://doi.org/10.2337/dc06-2537

    Article  PubMed  Google Scholar 

  123. Roberts CK, Hevener AL, Barnard RJ (2013) Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 3(1):1–58. https://doi.org/10.1002/cphy.c110062

    Article  PubMed  PubMed Central  Google Scholar 

  124. Santos GM, Montrezol FT, Pauli LS, Sartori-Cintra AR, Colantonio E, Gomes RJ, Marinho R, Moura LP, Pauli JR (2014) Undulatory physical resistance training program increases maximal strength in elderly type 2 diabetics. Einstein 12(4):425–432. https://doi.org/10.1590/S1679-45082014AO3162

    Article  PubMed  PubMed Central  Google Scholar 

  125. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, Bremner WJ, McKinlay JB (2002) Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab 87(2):589–598. https://doi.org/10.1210/jcem.87.2.8201

    Article  CAS  PubMed  Google Scholar 

  126. Morley JE, Perry HM 3rd (2003) Androgens and women at the menopause and beyond. J Gerontol A Biol Sci Med Sci 58(5):M409–M416

    Article  PubMed  Google Scholar 

  127. Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17(5):481–517. https://doi.org/10.1210/edrv-17-5-481

    Article  CAS  PubMed  Google Scholar 

  128. Moran A, Jacobs DR Jr, Steinberger J, Cohen P, Hong CP, Prineas R, Sinaiko AR (2002) Association between the insulin resistance of puberty and the insulin-like growth factor-I/growth hormone axis. J Clin Endocrinol Metab 87(10):4817–4820. https://doi.org/10.1210/jc.2002-020517

    Article  CAS  PubMed  Google Scholar 

  129. Hermann M, Berger P (2001) Hormonal changes in aging men: a therapeutic indication? Exp Gerontol 36(7):1075–1082

    Article  CAS  PubMed  Google Scholar 

  130. Ryall JG, Schertzer JD, Lynch GS (2008) Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology 9(4):213–228. https://doi.org/10.1007/s10522-008-9131-0

    Article  CAS  PubMed  Google Scholar 

  131. Nass R, Johannsson G, Christiansen JS, Kopchick JJ, Thorner MO (2009) The aging population – is there a role for endocrine interventions? Growth Hormo IGF Res 19(2):89–100. https://doi.org/10.1016/j.ghir.2008.09.002

    Article  CAS  Google Scholar 

  132. Sakuma K, Yamaguchi A (2010) Molecular mechanisms in aging and current strategies to counteract sarcopenia. Curr Aging Sci 3(2):90–101

    Article  CAS  PubMed  Google Scholar 

  133. Allan CA, Strauss BJ, McLachlan RI (2007) Body composition, metabolic syndrome and testosterone in ageing men. Int J Impot Res 19(5):448–457. https://doi.org/10.1038/sj.ijir.3901552

    Article  CAS  PubMed  Google Scholar 

  134. Chu LW, Tam S, Kung AW, Lo S, Fan S, Wong RL, Morley JE, Lam KS (2008) Serum total and bioavailable testosterone levels, central obesity, and muscle strength changes with aging in healthy Chinese men. J Am Geriatr Soc 56(7):1286–1291. https://doi.org/10.1111/j.1532-5415.2008.01746.x

    Article  PubMed  Google Scholar 

  135. Umpleby AM, Russell-Jones DL (1996) The hormonal control of protein metabolism. Baillieres Clin Endocrinol Metab 10(4):551–570

    Article  CAS  PubMed  Google Scholar 

  136. Fui MN, Dupuis P, Grossmann M (2014) Lowered testosterone in male obesity: mechanisms, morbidity and management. Asian J Androl 16(2):223–231. https://doi.org/10.4103/1008-682X.122365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rabijewski M, Papierska L, Piatkiewicz P (2016) The relationships between anabolic hormones and body composition in middle-aged and elderly men with prediabetes: a cross-sectional study. J Diabetes Res 2016:1747261. https://doi.org/10.1155/2016/1747261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Swiecicka A, Lunt M, Ahern T, O’Neill TW, Bartfai G, Casanueva FF, Forti G, Giwercman A, Han TS, MEJ L, Pendleton N, Punab M, Slowikowska-Hilczer J, Vanderschueren D, Huhtaniemi IT, FCW W, Rutter MK, Group ES (2017) Nonandrogenic anabolic hormones predict risk of frailty: European male ageing study prospective data. J Clin Endocrinol Metab 102(8):2798–2806. https://doi.org/10.1210/jc.2017-00090

    Article  PubMed  PubMed Central  Google Scholar 

  139. Valenzuela RE, Ponce JA, Morales-Figueroa GG, Muro KA, Carreon VR, Aleman-Mateo H (2013) Insufficient amounts and inadequate distribution of dietary protein intake in apparently healthy older adults in a developing country: implications for dietary strategies to prevent sarcopenia. Clin Interv Aging 8:1143–1148. https://doi.org/10.2147/CIA.S49810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Roubenoff R (2003) Catabolism of aging: is it an inflammatory process? Curr Opin Clin Nutr Metab Care 6(3):295–299. https://doi.org/10.1097/01.mco.0000068965.34812.62

    Article  PubMed  Google Scholar 

  141. Schaap LA, Pluijm SM, Deeg DJ, Harris TB, Kritchevsky SB, Newman AB, Colbert LH, Pahor M, Rubin SM, Tylavsky FA, Visser M, Health ABCS (2009) Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci 64(11):1183–1189. https://doi.org/10.1093/gerona/glp097

    Article  CAS  PubMed  Google Scholar 

  142. Murton AJ (2015) Muscle protein turnover in the elderly and its potential contribution to the development of sarcopenia. Proc Nutr Soc 74(4):387–396. https://doi.org/10.1017/S0029665115000130

    Article  CAS  PubMed  Google Scholar 

  143. Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V (2008) Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis 18(5):388–395. https://doi.org/10.1016/j.numecd.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  144. Kohara K (2014) Sarcopenic obesity in aging population: current status and future directions for research. Endocrine 45(1):15–25. https://doi.org/10.1007/s12020-013-9992-0

    Article  CAS  PubMed  Google Scholar 

  145. Wannamethee SG, Atkins JL (2015) Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity. Proc Nutr Soc 74(4):405–412. https://doi.org/10.1017/S002966511500169X

    Article  PubMed  Google Scholar 

  146. Lim S, Kim JH, Yoon JW, Kang SM, Choi SH, Park YJ, Kim KW, Lim JY, Park KS, Jang HC (2010) Sarcopenic obesity: prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care 33(7):1652–1654. https://doi.org/10.2337/dc10-0107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chung JY, Kang HT, Lee DC, Lee HR, Lee YJ (2013) Body composition and its association with cardiometabolic risk factors in the elderly: a focus on sarcopenic obesity. Arch Gerontol Geriatr 56(1):270–278. https://doi.org/10.1016/j.archger.2012.09.007

    Article  PubMed  Google Scholar 

  148. Kim TN, Park MS, Kim YJ, Lee EJ, Kim MK, Kim JM, Ko KS, Rhee BD, Won JC (2014) Association of low muscle mass and combined low muscle mass and visceral obesity with low cardiorespiratory fitness. PLoS One 9(6):e100118. https://doi.org/10.1371/journal.pone.0100118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lu CW, Yang KC, Chang HH, Lee LT, Chen CY, Huang KC (2013) Sarcopenic obesity is closely associated with metabolic syndrome. Obes Res Clin Pract 7(4):e301–e307. https://doi.org/10.1016/j.orcp.2012.02.003

    Article  PubMed  Google Scholar 

  150. Srikanthan P, Hevener AL, Karlamangla AS (2010) Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One 5(5):e10805. https://doi.org/10.1371/journal.pone.0010805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Stephen WC, Janssen I (2009) Sarcopenic-obesity and cardiovascular disease risk in the elderly. J Nutr Health Aging 13(5):460–466

    Article  CAS  PubMed  Google Scholar 

  152. Wannamethee SG, Shaper AG, Lennon L, Whincup PH (2007) Decreased muscle mass and increased central adiposity are independently related to mortality in older men. Am J Clin Nutr 86(5):1339–1346

    Article  CAS  PubMed  Google Scholar 

  153. Tian S, Xu Y (2016) Association of sarcopenic obesity with the risk of all-cause mortality: a meta-analysis of prospective cohort studies. Geriatr Gerontol Int 16(2):155–166. https://doi.org/10.1111/ggi.12579

    Article  PubMed  Google Scholar 

  154. Baumgartner RN (2000) Body composition in healthy aging. Ann N Y Acad Sci 904:437–448

    Article  CAS  PubMed  Google Scholar 

  155. Davison KK, Ford ES, Cogswell ME, Dietz WH (2002) Percentage of body fat and body mass index are associated with mobility limitations in people aged 70 and older from NHANES III. J Am Geriatr Soc 50(11):1802–1809

    Article  PubMed  Google Scholar 

  156. Zoico E, Di Francesco V, Guralnik JM, Mazzali G, Bortolani A, Guariento S, Sergi G, Bosello O, Zamboni M (2004) Physical disability and muscular strength in relation to obesity and different body composition indexes in a sample of healthy elderly women. Int J Obes Relat Metab Disord 28(2):234–241. https://doi.org/10.1038/sj.ijo.0802552

    Article  CAS  PubMed  Google Scholar 

  157. Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, Harris TB (2002) Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc 50(5):897–904

    Article  PubMed  Google Scholar 

  158. Lafortuna CL, Maffiuletti NA, Agosti F, Sartorio A (2005) Gender variations of body composition, muscle strength and power output in morbid obesity. Int J Obes 29(7):833–841. https://doi.org/10.1038/sj.ijo.0802955

    Article  CAS  Google Scholar 

  159. Friedmann JM, Elasy T, Jensen GL (2001) The relationship between body mass index and self-reported functional limitation among older adults: a gender difference. J Am Geriatr Soc 49(4):398–403

    Article  CAS  PubMed  Google Scholar 

  160. Angleman SB, Harris TB, Melzer D (2006) The role of waist circumference in predicting disability in periretirement age adults. Int J Obes 30(2):364–373. https://doi.org/10.1038/sj.ijo.0803130

    Article  CAS  Google Scholar 

  161. Moreira MA, Zunzunegui MV, Vafaei A, da Camara SM, Oliveira TS, Maciel AC (2016) Sarcopenic obesity and physical performance in middle aged women: a cross-sectional study in Northeast Brazil. BMC Public Health 16:43. https://doi.org/10.1186/s12889-015-2667-4

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bouchonville MF, Villareal DT (2013) Sarcopenic obesity: how do we treat it? Curr Opin Endocrinol Diabetes Obes 20(5):412–419. https://doi.org/10.1097/01.med.0000433071.11466.7f

    Article  PubMed  PubMed Central  Google Scholar 

  163. Molino S, Dossena M, Buonocore D, Verri M (2016) Sarcopenic obesity: an appraisal of the current status of knowledge and management in elderly people. J Nutr Health Aging 20(7):780–788. https://doi.org/10.1007/s12603-015-0631-8

    Article  CAS  PubMed  Google Scholar 

  164. Sgro P, Sansone M, Sansone A, Sabatini S, Borrione P, Romanelli F, Di Luigi L (2018) Physical exercise, nutrition and hormones: three pillars to fight sarcopenia. Aging male:1–14. https://doi.org/10.1080/13685538.2018.1439004

  165. Waters DL, Ward AL, Villareal DT (2013) Weight loss in obese adults 65years and older: a review of the controversy. Exp Gerontol 48(10):1054–1061. https://doi.org/10.1016/j.exger.2013.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  166. Villareal DT, Banks M, Sinacore DR, Siener C, Klein S (2006) Effect of weight loss and exercise on frailty in obese older adults. Arch Intern Med 166(8):860–866. https://doi.org/10.1001/archinte.166.8.860

    Article  PubMed  Google Scholar 

  167. Svetkey LP, Clark JM, Funk K, Corsino L, Batch BC, Hollis JF, Appel LJ, Brantley PJ, Loria CM, Champagne CM, Vollmer WM, Stevens VJ (2014) Greater weight loss with increasing age in the weight loss maintenance trial. Obesity 22(1):39–44. https://doi.org/10.1002/oby.20506

    Article  PubMed  Google Scholar 

  168. Villareal DT, Chode S, Parimi N, Sinacore DR, Hilton T, Armamento-Villareal R, Napoli N, Qualls C, Shah K (2011) Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med 364(13):1218–1229. https://doi.org/10.1056/NEJMoa1008234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Murphy CH, Churchward-Venne TA, Mitchell CJ, Kolar NM, Kassis A, Karagounis LG, Burke LM, Hawley JA, Phillips SM (2015) Hypoenergetic diet-induced reductions in myofibrillar protein synthesis are restored with resistance training and balanced daily protein ingestion in older men. Am J Phys Endocrinol Metab 308(9):E734–E743. https://doi.org/10.1152/ajpendo.00550.2014

    Article  CAS  Google Scholar 

  170. Muscariello E, Nasti G, Siervo M, Di Maro M, Lapi D, D'Addio G, Colantuoni A (2016) Dietary protein intake in sarcopenic obese older women. Clin Interv Aging 11:133–140. https://doi.org/10.2147/CIA.S96017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Pantelic S, Popovic M, Miloradovic V, Kostic R, Milanovic Z, Bratic M (2013) Effects of short-term exercise training on cardiorespiratory fitness of male adults with myocardial infarction. J Phys Ther Sci 25(8):929–935. https://doi.org/10.1589/jpts.25.929

    Article  PubMed  PubMed Central  Google Scholar 

  172. Argiles JM, Orpi M, Busquets S, Lopez-Soriano FJ (2012) Myostatin: more than just a regulator of muscle mass. Drug Discov Today 17(13-14):702–709. https://doi.org/10.1016/j.drudis.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  173. McMahon G, Morse CI, Burden A, Winwood K, Onambele GL (2014) Muscular adaptations and insulin-like growth factor-1 responses to resistance training are stretch-mediated. Muscle Nerve 49(1):108–119. https://doi.org/10.1002/mus.23884

    Article  CAS  PubMed  Google Scholar 

  174. Fujita S, Rasmussen BB, Cadenas JG, Drummond MJ, Glynn EL, Sattler FR, Volpi E (2007) Aerobic exercise overcomes the age-related insulin resistance of muscle protein metabolism by improving endothelial function and Akt/mammalian target of rapamycin signaling. Diabetes 56(6):1615–1622. https://doi.org/10.2337/db06-1566

    Article  CAS  PubMed  Google Scholar 

  175. Timmerman KL, Dhanani S, Glynn EL, Fry CS, Drummond MJ, Jennings K, Rasmussen BB, Volpi E (2012) A moderate acute increase in physical activity enhances nutritive flow and the muscle protein anabolic response to mixed nutrient intake in older adults. Am J Clin Nutr 95(6):1403–1412. https://doi.org/10.3945/ajcn.111.020800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lanza IR, Nair KS (2009) Muscle mitochondrial changes with aging and exercise. Am J Clin Nutr 89(1):467S–471S. https://doi.org/10.3945/ajcn.2008.26717D

    Article  CAS  PubMed  Google Scholar 

  177. Thornell LE (2011) Sarcopenic obesity: satellite cells in the aging muscle. Curr Opin Clin Nutr Metab Care 14(1):22–27. https://doi.org/10.1097/MCO.0b013e3283412260

    Article  PubMed  Google Scholar 

  178. Lambert CP, Wright NR, Finck BN, Villareal DT (2008) Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J Appl Physiol 105(2):473–478. https://doi.org/10.1152/japplphysiol.00006.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Frimel TN, Sinacore DR, Villareal DT (2008) Exercise attenuates the weight-loss-induced reduction in muscle mass in frail obese older adults. Med Sci Sports Exerc 40(7):1213–1219. https://doi.org/10.1249/MSS.0b013e31816a85ce

    Article  PubMed  PubMed Central  Google Scholar 

  180. Liao CD, Tsauo JY, Lin LF, Huang SW, Ku JW, Chou LC, Liou TH (2017) Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity: a CONSORT-compliant prospective randomized controlled trial. Medicine 96(23):e7115. https://doi.org/10.1097/MD.0000000000007115

    Article  PubMed  PubMed Central  Google Scholar 

  181. Liao CD, Tsauo JY, Huang SW, Ku JW, Hsiao DJ, Liou TH (2018) Effects of elastic band exercise on lean mass and physical capacity in older women with sarcopenic obesity: a randomized controlled trial. Sci Rep 8(1):2317. https://doi.org/10.1038/s41598-018-20677-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Marcos-Pardo PJ, Martinez-Rodriguez A, Gil-Arias A (2018) Impact of a motivational resistance-training programme on adherence and body composition in the elderly. Sci Rep 8(1):1370. https://doi.org/10.1038/s41598-018-19764-6

    Article  PubMed  PubMed Central  Google Scholar 

  183. Dillon EL (2013) Nutritionally essential amino acids and metabolic signaling in aging. Amino Acids 45(3):431–441. https://doi.org/10.1007/s00726-012-1438-0

    Article  CAS  PubMed  Google Scholar 

  184. Nowson C, O’Connell S (2015) Protein requirements and recommendations for older people: a review. Nutrients 7(8):6874–6899. https://doi.org/10.3390/nu7085311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Baum JI, Kim IY, Wolfe RR (2016) Protein consumption and the elderly: what Is the optimal level of intake? Nutrients 8(6). https://doi.org/10.3390/nu8060359

    Article  PubMed Central  Google Scholar 

  186. Phillips SM (2017) Current Concepts and Unresolved Questions in Dietary Protein Requirements and Supplements in Adults. Front Nutr 4:13. https://doi.org/10.3389/fnut.2017.00013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Volpi E, Mittendorfer B, Wolf SE, Wolfe RR (1999) Oral amino acids stimulate muscle protein anabolism in the elderly despite higher first-pass splanchnic extraction. Am J Phys 277(3 Pt 1):E513–E520

    CAS  Google Scholar 

  188. Paddon-Jones D, Rasmussen BB (2009) Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 12(1):86–90. https://doi.org/10.1097/MCO.0b013e32831cef8b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cuthbertson DJ, Babraj J, Smith K, Wilkes E, Fedele MJ, Esser K, Rennie M (2006) Anabolic signaling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise. Am J Phys Endocrinol Metab 290(4):E731–E738. https://doi.org/10.1152/ajpendo.00415.2005

    Article  CAS  Google Scholar 

  190. Symons TB, Schutzler SE, Cocke TL, Chinkes DL, Wolfe RR, Paddon-Jones D (2007) Aging does not impair the anabolic response to a protein-rich meal. Am J Clin Nutr 86(2):451–456

    Article  CAS  PubMed  Google Scholar 

  191. Verreijen AM, Verlaan S, Engberink MF, Swinkels S, de Vogel-van den Bosch J, Weijs PJ (2015) A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. Am J Clin Nutr 101(2):279–286. https://doi.org/10.3945/ajcn.114.090290

    Article  CAS  PubMed  Google Scholar 

  192. Komar B, Schwingshackl L, Hoffmann G (2015) Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: a systematic review and meta-analysis. J Nutr Health Aging 19(4):437–446. https://doi.org/10.1007/s12603-014-0559-4

    Article  CAS  PubMed  Google Scholar 

  193. Ispoglou T, White H, Preston T, McElhone S, McKenna J, Hind K (2016) Double-blind, placebo-controlled pilot trial of L-Leucine-enriched amino-acid mixtures on body composition and physical performance in men and women aged 65–75 years. Eur J Clin Nutr 70(2):182–188. https://doi.org/10.1038/ejcn.2015.91

    Article  CAS  PubMed  Google Scholar 

  194. Sammarco R, Marra M, Di Guglielmo ML, Naccarato M, Contaldo F, Poggiogalle E, Donini LM, Pasanisi F (2017) Evaluation of hypocaloric diet with protein supplementation in middle-aged sarcopenic obese women: a pilot study. Obes Facts 10(3):160–167. https://doi.org/10.1159/000468153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Augustin H, McGourty K, Steinert JR, Cocheme HM, Adcott J, Cabecinha M, Vincent A, Halff EF, Kittler JT, Boucrot E, Partridge L (2017) Myostatin-like proteins regulate synaptic function and neuronal morphology. Development 144(13):2445–2455. https://doi.org/10.1242/dev.152975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF (2002) Serum myostatin-immunoreactive protein is increased in 60–92 year old women and men with muscle wasting. J Nutr Health Aging 6(5):343–348

    CAS  PubMed  Google Scholar 

  197. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17(1):71–74. https://doi.org/10.1038/ng0997-71

    Article  CAS  PubMed  Google Scholar 

  198. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350(26):2682–2688. https://doi.org/10.1056/NEJMoa040933

    Article  CAS  PubMed  Google Scholar 

  199. Shan T, Liang X, Bi P, Kuang S (2013) Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1alpha-Fndc5 pathway in muscle. FASEB J 27(5):1981–1989. https://doi.org/10.1096/fj.12-225755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wilkes JJ, Lloyd DJ, Gekakis N (2009) Loss-of-function mutation in myostatin reduces tumor necrosis factor alpha production and protects liver against obesity-induced insulin resistance. Diabetes 58(5):1133–1143. https://doi.org/10.2337/db08-0245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbova G, Partridge T, Zammit P, Bunger L, Patel K (2007) Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci U S A 104(6):1835–1840. https://doi.org/10.1073/pnas.0604893104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Jackson MF, Luong D, Vang DD, Garikipati DK, Stanton JB, Nelson OL, Rodgers BD (2012) The aging myostatin null phenotype: reduced adiposity, cardiac hypertrophy, enhanced cardiac stress response, and sexual dimorphism. J Endocrinol 213(3):263–275. https://doi.org/10.1530/JOE-11-0455

    Article  CAS  PubMed  Google Scholar 

  203. Krivickas LS, Walsh R, Amato AA (2009) Single muscle fiber contractile properties in adults with muscular dystrophy treated with MYO-029. Muscle Nerve 39(1):3–9. https://doi.org/10.1002/mus.21200

    Article  CAS  PubMed  Google Scholar 

  204. Gonzalez-Freire M, Rodriguez-Romo G, Santiago C, Bustamante-Ara N, Yvert T, Gomez-Gallego F, Serra Rexach JA, Ruiz JR, Lucia A (2010) The K153R variant in the myostatin gene and sarcopenia at the end of the human lifespan. Age 32(3):405–409. https://doi.org/10.1007/s11357-010-9139-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Garatachea N, Pinos T, Camara Y, Rodriguez-Romo G, Emanuele E, Ricevuti G, Venturini L, Santos-Lozano A, Santiago-Dorrego C, Fiuza-Luces C, Yvert T, Andreu AL, Lucia A (2013) Association of the K153R polymorphism in the myostatin gene and extreme longevity. Age 35(6):2445–2454. https://doi.org/10.1007/s11357-013-9513-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ferrell RE, Conte V, Lawrence EC, Roth SM, Hagberg JM, Hurley BF (1999) Frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes. Genomics 62(2):203–207. https://doi.org/10.1006/geno.1999.5984

    Article  CAS  PubMed  Google Scholar 

  207. Gruson D, Ginion A, Lause P, Ketelslegers JM, Thissen JP, Bertrand L (2012) Urotensin II and urocortin trigger the expression of myostatin, a negative regulator of cardiac growth, in cardiomyocytes. Peptides 33(2):351–353. https://doi.org/10.1016/j.peptides.2011.12.017

    Article  CAS  PubMed  Google Scholar 

  208. Hildreth KL, Barry DW, Moreau KL, Vande Griend J, Meacham RB, Nakamura T, Wolfe P, Kohrt WM, Ruscin JM, Kittelson J, Cress ME, Ballard R, Schwartz RS (2013) Effects of testosterone and progressive resistance exercise in healthy, highly functioning older men with low-normal testosterone levels. J Clin Endocrinol Metab 98(5):1891–1900. https://doi.org/10.1210/jc.2012-3695, 10.1210/jc.2013-2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Mac RP, Lee M, Yarasheski KE, Sinha-Hikim I, Dzekov C, Dzekov J, Magliano L, Storer TW (2005) Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab 90(2):678–688. https://doi.org/10.1210/jc.2004-1184

    Article  CAS  PubMed  Google Scholar 

  210. Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Montori VM, Task Force ES (2010) Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 95(6):2536–2559. https://doi.org/10.1210/jc.2009-2354

    Article  CAS  PubMed  Google Scholar 

  211. Giannoulis MG, Martin FC, Nair KS, Umpleby AM, Sonksen P (2012) Hormone replacement therapy and physical function in healthy older men. Time to talk hormones? Endocr Rev 33(3):314–377. https://doi.org/10.1210/er.2012-1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Rudman D, Feller AG, Nagraj HS, Gergans GA, Lalitha PY, Goldberg AF, Schlenker RA, Cohn L, Rudman IW, Mattson DE (1990) Effects of human growth hormone in men over 60 years old. N Engl J Med 323(1):1–6. https://doi.org/10.1056/NEJM199007053230101

    Article  CAS  PubMed  Google Scholar 

  213. Blackman MR, Sorkin JD, Munzer T, Bellantoni MF, Busby-Whitehead J, Stevens TE, Jayme J, O'Connor KG, Christmas C, Tobin JD, Stewart KJ, Cottrell E, St Clair C, Pabst KM, Harman SM (2002) Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA 288(18):2282–2292

    Article  CAS  PubMed  Google Scholar 

  214. Liu YL, Lu CW, Shi L, Liou YM, Lee LT, Huang KC (2015) Low intensive lifestyle modification in young adults with metabolic syndrome a community-based interventional study in Taiwan. Medicine 94(22):e916. https://doi.org/10.1097/MD.0000000000000916

    Article  PubMed  PubMed Central  Google Scholar 

  215. White HK, Petrie CD, Landschulz W, MacLean D, Taylor A, Lyles K, Wei JY, Hoffman AR, Salvatori R, Ettinger MP, Morey MC, Blackman MR, Merriam GR, Capromorelin Study G (2009) Effects of an oral growth hormone secretagogue in older adults. J Clin Endocrinol Metab 94(4):1198–1206. https://doi.org/10.1210/jc.2008-0632

    Article  CAS  PubMed  Google Scholar 

  216. Makimura H, Feldpausch MN, Rope AM, Hemphill LC, Torriani M, Lee H, Grinspoon SK (2012) Metabolic effects of a growth hormone-releasing factor in obese subjects with reduced growth hormone secretion: a randomized controlled trial. J Clin Endocrinol Metab 97(12):4769–4779. https://doi.org/10.1210/jc.2012-2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Villareal DT, Holloszy JO (2006) DHEA enhances effects of weight training on muscle mass and strength in elderly women and men. Am J Phys Endocrinol Metab 291(5):E1003–E1008. https://doi.org/10.1152/ajpendo.00100.2006

    Article  CAS  Google Scholar 

  218. Corona G, Rastrelli G, Giagulli VA, Sila A, Sforza A, Forti G, Mannucci E, Maggi M (2013) Dehydroepiandrosterone supplementation in elderly men: a meta-analysis study of placebo-controlled trials. J Clin Endocrinol Metab 98(9):3615–3626. https://doi.org/10.1210/jc.2013-1358

    Article  CAS  PubMed  Google Scholar 

  219. Schroeder ET, Zheng L, Yarasheski KE, Qian D, Stewart Y, Flores C, Martinez C, Terk M, Sattler FR (2004) Treatment with oxandrolone and the durability of effects in older men. J Appl Physiol 96(3):1055–1062. https://doi.org/10.1152/japplphysiol.00808.2003

    Article  CAS  PubMed  Google Scholar 

  220. Morley JE, von Haehling S, Anker SD (2014) Are we closer to having drugs to treat muscle wasting disease? J Cachexia Sarcopenia Muscle 5(2):83–87. https://doi.org/10.1007/s13539-014-0149-7

    Article  PubMed  PubMed Central  Google Scholar 

  221. Mueller TC, Bachmann J, Prokopchuk O, Friess H, Martignoni ME (2016) Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia – can findings from animal models be translated to humans? BMC Cancer 16:75. https://doi.org/10.1186/s12885-016-2121-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corina Aurelia Zugravu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cretoiu, S.M., Zugravu, C.A. (2018). Nutritional Considerations in Preventing Muscle Atrophy. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_23

Download citation

Publish with us

Policies and ethics