Heart Genomics pp 103-126 | Cite as

Mitochondria Genome Mutations and Cardiovascular Diseases

  • Hui Shi
  • Ying Yu
  • Minghui Li
  • Ruizhen ChenEmail author
Part of the Translational Bioinformatics book series (TRBIO, volume 16)


The cardiovascular diseases (CVDs) are one of the leading causes of morbidity and mortality across the world. CVDs have multifactorial etiologies including environmental, lifestyle, and genetic factors. Mitochondria (mt) are indispensable organelles harboring a 16,569 base-pair, circular DNA genome that encodes 13 proteins involved in electron transport and oxidative phosphorylation system (OXPHOS). Critical components of OXPHOS are encoded by the mitochondrial DNAs (mtDNAs). Any mutation in this genome might impair the mitochondrial function leading to increased oxidative stress, inflammation, and cell death, which are deleterious factors to cardiovascular system. There is a growing body of evidence in support of the roles of mitochondrial genome mutations in the pathogenesis of CVDs, including cardiomyopathies, hypertension, atherosclerosis, inflammation, etc. Consequently, the mtDNA genome mutations might represent promising molecular biomarkers or therapeutic targets for CVDs. In this review, we focused on the state-of-the-art studies about mitochondrial genome mutations associated with CVDs, seeking for their potential diagnosis and treatment significances in clinical practices.


Cardiovascular diseases Mitochondrial genome mtDNA mutation Mitochondria dysfunction 


  1. Ahuja P, Wanagat J, Wang Z, et al. Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation. 2013;127:1957–67.CrossRefGoogle Scholar
  2. Alila-Fersi O, Chamkha I, Majdoub I, et al. Co segregation of the m.1555A>G mutation in the MT-RNR1 gene and mutations in MT-ATP6 gene in a family with dilated mitochondrial cardiomyopathy and hearing loss: a whole mitochondrial genome screening. Biochem Biophys Res Commun. 2017;484:71–8.CrossRefGoogle Scholar
  3. Ashar FN, Zhang Y, Longchamps RJ, et al. Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol. 2017;2:1247–55.CrossRefGoogle Scholar
  4. Balakrishnan VS, Rao M, Menon V, et al. Resistance training increases muscle mitochondrial biogenesis in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5:996–1002.CrossRefGoogle Scholar
  5. Bliksoen M, Mariero LH, Torp MK, et al. Extracellular mtDNA activates NF-kappaB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol. 2016;111:42.CrossRefGoogle Scholar
  6. Bobba A, Giannattasio S, Pucci A, Lippolis R, Camaschella C, Marra E. Characterization of mitochondrial DNA in primary cardiomyopathies. Clin Chim Acta. 1995;243:181–9.CrossRefGoogle Scholar
  7. Botto N, Berti S, Manfredi S, et al. Detection of mtDNA with 4977 bp deletion in blood cells and atherosclerotic lesions of patients with coronary artery disease. Mutat Res. 2005;570:81–8.CrossRefGoogle Scholar
  8. Chen X, An X, Chen D, et al. Chronic exercise training improved aortic endothelial and mitochondrial function via an AMPKalpha2-dependent manner. Front Physiol. 2016;7:631.PubMedPubMedCentralGoogle Scholar
  9. Dai DF, Chen T, Wanagat J, et al. Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell. 2010;9:536–44.CrossRefGoogle Scholar
  10. Di Giovanni S, Mirabella M, Spinazzola A, et al. Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. Neurology. 2001;57:515–8.CrossRefGoogle Scholar
  11. DiMauro S, Schon EA. Mitochondrial DNA mutations in human disease. Am J Med Genet. 2001;106:18–26.CrossRefGoogle Scholar
  12. Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Mehta JL. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep. 2013;3:1077.CrossRefGoogle Scholar
  13. Du H, Li L, Bennett D, et al. Fresh fruit consumption and major cardiovascular disease in China. N Engl J Med. 2016;374:1332–43.CrossRefGoogle Scholar
  14. Elango S, Govindaraj P, Vishwanadha VP, et al. Analysis of mitochondrial genome revealed a rare 50 bp deletion and substitutions in a family with hypertension. Mitochondrion. 2011;11:878–85.CrossRefGoogle Scholar
  15. El-Hattab AW, Scaglia F. Mitochondrial cardiomyopathies. Front Cardiovasc Med. 2016;3:25.CrossRefGoogle Scholar
  16. El-Hattab AW, Emrick LT, Craigen WJ, Scaglia F. Citrulline and arginine utility in treating nitric oxide deficiency in mitochondrial disorders. Mol Genet Metab. 2012;107:247–52.CrossRefGoogle Scholar
  17. El-Hattab AW, Emrick LT, Chanprasert S, Craigen WJ, Scaglia F. Mitochondria: role of citrulline and arginine supplementation in MELAS syndrome. Int J Biochem Cell B. 2014;48:85–91.CrossRefGoogle Scholar
  18. El-Hattab AW, Adesina AM, Jones J, Scaglia F. MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab. 2015;116:4–12.CrossRefGoogle Scholar
  19. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83:254–60.CrossRefGoogle Scholar
  20. Enns GM. Treatment of mitochondrial disorders: antioxidants and beyond. J Child Neurol. 2014;29:1235–40.CrossRefGoogle Scholar
  21. Fallah Tafti M, Khatami M, Rezaei S, Heidari MM, Hadadzadeh M. Novel and heteroplasmic mutations in mitochondrial tRNA genes in Brugada syndrome. Cardiol J. 2018;25:113–9.CrossRefGoogle Scholar
  22. Finsterer J, Kothari S. Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol. 2014;177:754–63.CrossRefGoogle Scholar
  23. Fuentes RM, Notkola IL, Shemeikka S, Tuomilehto J, Nissinen A. Familial aggregation of blood pressure: a population-based family study in eastern Finland. J Hum Hypertens. 2000;14:441–5.CrossRefGoogle Scholar
  24. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.PubMedGoogle Scholar
  25. Holmgren D, Wahlander H, Eriksson BO, Oldfors A, Holme E, Tulinius M. Cardiomyopathy in children with mitochondrial disease; clinical course and cardiological findings. Eur Heart J. 2003;24:280–8.CrossRefGoogle Scholar
  26. Ide T, Tsutsui H, Hayashidani S, et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res. 2001;88:529–35.CrossRefGoogle Scholar
  27. Ikeuchi M, Matsusaka H, Kang D, et al. Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation. 2005;112:683–90.CrossRefGoogle Scholar
  28. Jiang P, Wang M, Xue L, et al. A hypertension-associated tRNAAla mutation alters tRNA metabolism and mitochondrial function. Mol Cell Biol. 2016;36:1920–30.CrossRefGoogle Scholar
  29. Jonckheere AI, Hogeveen M, Nijtmans L, et al. A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy. BMJ Case Rep. 2009;2009:bcr07.2008.0504.CrossRefGoogle Scholar
  30. Kang HC, Lee YM, Kim HD, Lee JS, Slama A. Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia. 2007;48:82–8.PubMedGoogle Scholar
  31. Kang E, Wu J, Gutierrez NM, et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature. 2016;540:270–5.CrossRefGoogle Scholar
  32. Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F, Tian R. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res. 2010;106:1541–8.CrossRefGoogle Scholar
  33. Khatami M, Houshmand M, Sadeghizadeh M, et al. Accumulation of mitochondrial genome variations in Persian LQTS patients: a possible risk factor? Cardiovasc Pathol. 2010;19:e21–7.CrossRefGoogle Scholar
  34. Khatami F, Mehdi Heidari M, Houshmand M. The mitochondrial DNA mutations associated with cardiac arrhythmia investigated in an LQTS family. Iran J Basic Med Sci. 2014;17:656–61.PubMedPubMedCentralGoogle Scholar
  35. Krebs P, Fan W, Chen YH, et al. Lethal mitochondrial cardiomyopathy in a hypomorphic Med30 mouse mutant is ameliorated by ketogenic diet. Proc Natl Acad Sci U S A. 2011;108:19678–82.CrossRefGoogle Scholar
  36. Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309:481–4.CrossRefGoogle Scholar
  37. Lai LP, Tsai CC, Su MJ, et al. Atrial fibrillation is associated with accumulation of aging-related common type mitochondrial DNA deletion mutation in human atrial tissue. Chest. 2003;123:539–44.CrossRefGoogle Scholar
  38. Lauritzen KH, Kleppa L, Aronsen JM, et al. Impaired dynamics and function of mitochondria caused by mtDNA toxicity leads to heart failure. Am J Physiol Heart Circ Physiol. 2015;309:H434–49.CrossRefGoogle Scholar
  39. Lev D, Nissenkorn A, Leshinsky-Silver E, et al. Clinical presentations of mitochondrial cardiomyopathies. Pediatr Cardiol. 2004;25:443–50.CrossRefGoogle Scholar
  40. Limongelli G, Tome-Esteban M, Dejthevaporn C, Rahman S, Hanna MG, Elliott PM. Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease. Eur J Heart Fail. 2010;12:114–21.CrossRefGoogle Scholar
  41. Liu Y, Li R, Li Z, et al. Mitochondrial transfer RNAMet 4435A>G mutation is associated with maternally inherited hypertension in a Chinese pedigree. Hypertension. 2009;53:1083–90.CrossRefGoogle Scholar
  42. Liu S, Bai Y, Huang J, et al. Do mitochondria contribute to left ventricular non-compaction cardiomyopathy? New findings from myocardium of patients with left ventricular non-compaction cardiomyopathy. Mol Genet Metab. 2013;109:100–6.CrossRefGoogle Scholar
  43. Liu Y, Zhu Q, Zhu C, et al. Systematic analysis of the clinical and biochemical characteristics of maternally inherited hypertension in Chinese Han families associated with mitochondrial. BMC Med Genet. 2014;7:73.Google Scholar
  44. Liu LP, Cheng K, Ning MA, et al. Association between peripheral blood cells mitochondrial DNA content and severity of coronary heart disease. Atherosclerosis. 2017;261:105–10.CrossRefGoogle Scholar
  45. Lu Z, Chen H, Meng Y, et al. The tRNAMet 4435A>G mutation in the mitochondrial haplogroup G2a1 is responsible for maternally inherited hypertension in a Chinese pedigree. Eur J Hum Genet. 2011;19:1181–6.CrossRefGoogle Scholar
  46. Lu Y, Xiao T, Zhang F, et al. Effect of mitochondrial tRNA(Lys) mutation on the clinical and biochemical characteristics of Chinese essential hypertensive subjects. Biochem Biophys Res Commun. 2014;454:500–4.CrossRefGoogle Scholar
  47. Marin-Garcia J, Goldenthal MJ. Mitochondrial centrality in heart failure. Heart Fail Rev. 2008;13:137–50.CrossRefGoogle Scholar
  48. Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol. 2013;305:H459–76.CrossRefGoogle Scholar
  49. May-Panloup P, Vignon X, Chretien MF, et al. Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod Biol Endocrinol. 2005;3:65.CrossRefGoogle Scholar
  50. McCarthy CG, Wenceslau CF, Goulopoulou S, et al. Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc Res. 2015;107:119–30.CrossRefGoogle Scholar
  51. McNally EM, Golbus JR, Puckelwartz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest. 2013;123:19–26.CrossRefGoogle Scholar
  52. Mitrofanov KY, Zhelankin AV, Shiganova GM, et al. Analysis of mitochondrial DNA heteroplasmic mutations A1555G, C3256T, T3336C, capital ES, Cyrillic5178capital A, cyrillic, G12315A, G13513A, G14459A, G14846capital A, cyrillic and G15059A in CHD patients with the history of myocardial infarction. Exp Mol Pathol. 2016;100:87–91.CrossRefGoogle Scholar
  53. Mohammed S, Bahitham W, Chan A, Chiu B, Bamforth F, Sergi C. Mitochondrial DNA related cardiomyopathies. Front Biosci (Elite Ed). 2012;4:1706–16.CrossRefGoogle Scholar
  54. Oka T, Hikoso S, Yamaguchi O, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485:251–5.CrossRefGoogle Scholar
  55. Qin Y, Xue L, Jiang P, et al. Mitochondrial tRNA variants in Chinese subjects with coronary heart disease. J Am Heart Assoc. 2014;3:e000437.CrossRefGoogle Scholar
  56. Raha S, Merante F, Shoubridge E, et al. Repopulation of rho0 cells with mitochondria from a patient with a mitochondrial DNA point mutation in tRNA(Gly) results in respiratory chain dysfunction. Hum Mutat. 1999;13:245–54.CrossRefGoogle Scholar
  57. Richardson J, Irving L, Hyslop LA, et al. Concise reviews: assisted reproductive technologies to prevent transmission of mitochondrial DNA disease. Stem Cells. 2015;33:639–45.CrossRefGoogle Scholar
  58. Ruppert V, Nolte D, Aschenbrenner T, Pankuweit S, Funck R, Maisch B. Novel point mutations in the mitochondrial DNA detected in patients with dilated cardiomyopathy by screening the whole mitochondrial genome. Biochem Biophys Res Commun. 2004;318:535–43.CrossRefGoogle Scholar
  59. Safdar A, Khrapko K, Flynn JM, et al. Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice. Skelet Muscle. 2016;6:7.CrossRefGoogle Scholar
  60. Sazonova M, Budnikov E, Khasanova Z, Sobenin I, Postnov A, Orekhov A. Studies of the human aortic intima by a direct quantitative assay of mutant alleles in the mitochondrial genome. Atherosclerosis. 2009;204:184–90.CrossRefGoogle Scholar
  61. Sazonova MA, Zhelankin AV, Barinova VA, et al. Mutations of mitochondrial genome in carotid atherosclerosis. Front Genet. 2015;6:111.CrossRefGoogle Scholar
  62. Sazonova MA, Shkurat TP, Demakova NA, et al. Mitochondrial genome sequencing in atherosclerosis: what's next? Curr Pharm Des. 2016;22:390–6.CrossRefGoogle Scholar
  63. Schwartz F, Duka A, Sun F, Cui J, Manolis A, Gavras H. Mitochondrial genome mutations in hypertensive individuals. Am J Hypertens. 2004;17:629–35.CrossRefGoogle Scholar
  64. Skou AS, Tranebjaerg L, Jensen T, Hasle H. Mitochondrial 12S ribosomal RNA A1555G mutation associated with cardiomyopathy and hearing loss following high-dose chemotherapy and repeated aminoglycoside exposure. J Pediatr. 2014;164:413–5.CrossRefGoogle Scholar
  65. Sobenin IA, Sazonova MA, Ivanova MM, et al. Mutation C3256T of mitochondrial genome in white blood cells: novel genetic marker of atherosclerosis and coronary heart disease. PLoS One. 2012;7:e46573.CrossRefGoogle Scholar
  66. Stocchi L, Polidori E, Potenza L, et al. Mutational analysis of mitochondrial DNA in Brugada syndrome. Cardiovasc Pathol. 2016;25:47–54.CrossRefGoogle Scholar
  67. Tang S, Batra A, Zhang Y, Ebenroth ES, Huang T. Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion. 2010;10:350–7.CrossRefGoogle Scholar
  68. Taylor RW, Giordano C, Davidson MM, et al. A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. J Am Coll Cardiol. 2003;41:1786–96.CrossRefGoogle Scholar
  69. Teng L, Zheng J, Leng J, Ding Y. Clinical and molecular characterization of a Han Chinese family with high penetrance of essential hypertension. Mitochondrial DNA. 2012;23:461–5.CrossRefGoogle Scholar
  70. Tian F, Li J, Liu XW, Tong TJ, Zhang ZY. Age-dependent accumulation of mitochondrial DNA deletions in the aortic root of atherosclerosis-prone apolipoprotein E-knockout mice. Arch Gerontol Geriatr. 2016;63:72–7.CrossRefGoogle Scholar
  71. Tsuboi M, Hisatome I, Morisaki T, et al. Mitochondrial DNA deletion associated with the reduction of adenine nucleotides in human atrium and atrial fibrillation. Eur J Clin Investig. 2001;31:489–96.CrossRefGoogle Scholar
  72. Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999;283:1482–8.CrossRefGoogle Scholar
  73. Wang J, Wilhelmsson H, Graff C, et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet. 1999;21:133–7.CrossRefGoogle Scholar
  74. Wang S, Li R, Fettermann A, et al. Maternally inherited essential hypertension is associated with the novel 4263A>G mutation in the mitochondrial tRNAIle gene in a large Han Chinese family. Circ Res. 2011;108:862–70.CrossRefGoogle Scholar
  75. Watson B Jr, Khan MA, Desmond RA, Bergman S. Mitochondrial DNA mutations in black Americans with hypertension-associated end-stage renal disease. Am J Kidney Dis. 2001;38:529–36.CrossRefGoogle Scholar
  76. Wu B, Ni H, Li J, et al. The impact of circulating mitochondrial DNA on cardiomyocyte apoptosis and myocardial injury after TLR4 activation in experimental autoimmune myocarditis. Cell Physiol Biochem. 2017;42:713–28.CrossRefGoogle Scholar
  77. Xu Y, Chen X, Huang H, Liu W. The mitochondrial tRNAAla T5655C mutation may modulate the phenotypic expression of tRNAMet and tRNAGln A4401G mutation in a Han Chinese family with essential hypertension. Int Heart J. 2017;58:95–9.CrossRefGoogle Scholar
  78. Yamasaki T, Yanishi K, Tateishi S, et al. Late-onset mitochondrial cardiomyopathy triggered by anticancer treatment. Intern Med. 2017;56:1357–61.CrossRefGoogle Scholar
  79. Yang KC, Bonini MG, Dudley SC Jr. Mitochondria and arrhythmias. Free Radic Biol Med. 2014;71:351–61.CrossRefGoogle Scholar
  80. Yu E, Calvert PA, Mercer JR, et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 2013;128:702–12.CrossRefGoogle Scholar
  81. Zhang J, Xu S, Xu Y, et al. Relation of mitochondrial DNA copy number in peripheral blood to postoperative atrial fibrillation after isolated off-pump coronary artery bypass grafting. Am J Cardiol. 2017;119:473–7.CrossRefGoogle Scholar
  82. Zhu HY, Wang SW, Liu L, et al. A mitochondrial mutation A4401G is involved in the pathogenesis of left ventricular hypertrophy in Chinese hypertensives. Eur J Hum Genet. 2009;17:172–8.CrossRefGoogle Scholar
  83. Zinner SH, Levy PS, Kass EH. Familial aggregation of blood pressure in childhood. N Engl J Med. 1971;284:401–4.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalShanghai Medical College of Fudan UniversityShanghaiChina
  2. 2.Department of General Practice, Zhongshan HospitalShanghai Medical College of Fudan UniversityShanghaiChina

Personalised recommendations