Advertisement

Circular RNAs pp 109-117 | Cite as

Circular RNA in Exosomes

  • Daniele Fanale
  • Simona Taverna
  • Antonio Russo
  • Viviana Bazan
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)

Abstract

Circular RNAs (circRNAs) are a novel family of non-coding endogenous RNAs discovered in all eukaryotic cells and generated through a particular mechanism of alternative splicing called “back-splicing”. These molecules show multiple functions, by acting as modulators of gene and miRNA expression, and may have a role in several biological processes, such as cell proliferation and invasion with, tumour development and progression, and in several mechanisms underlying other diseases. Their presence has been shown to be abundant in several body fluids such as blood and saliva. Based on their biogenesis mechanism, circRNAs may be categorized into five classes: exonic circRNAs, intronic circRNAs, antisense circRNAs, sense overlapping circRNAs and intergenic circRNAs. Recently, the presence of circRNAs, in addition to that of miRNAs and long non-coding RNAs, has been detected also in small extracellular vesicles called exosomes. Investigating the presence and expression levels of serum exosomal circRNAs could allow us, in future, to discriminate cancer patients from healthy individuals, identifying new potential exosome-based cancer biomarkers.

In this chapter, we briefly will describe the major features and functions of exosomal circRNAs, discussing their potential role as molecular biomarkers for diagnosis, prognosis and monitoring of complex diseases, including cancer.

Keywords

Biomarkers CDR1as Circular RNAs (circRNAs) Exosomes Non-coding RNAs 

References

  1. 1.
    Caruso S, Bazan V, Rolfo C, Insalaco L, Fanale D, Bronte G et al (2012) MicroRNAs in colorectal cancer stem cells: new regulators of cancer stemness? Oncogene 1(11):e32.  https://doi.org/10.1038/oncsis.2012.33 CrossRefGoogle Scholar
  2. 2.
    Corsini LR, Bronte G, Terrasi M, Amodeo V, Fanale D, Fiorentino E et al (2012) The role of microRNAs in cancer: diagnostic and prognostic biomarkers and targets of therapies. Expert Opin Ther Targets 16(sup2):S103–S1S9.  https://doi.org/10.1517/14728222.2011.650632 CrossRefPubMedGoogle Scholar
  3. 3.
    Rolfo C, Fanale D, Hong D, Tsimberidou A, Piha-Paul S, Pauwels P et al (2014) Impact of microRNAs in resistance to chemotherapy and novel targeted agents in non-small cell lung cancer. Curr Pharm Biotechnol 15(5):475–485.  https://doi.org/10.2174/1389201015666140519123219 CrossRefPubMedGoogle Scholar
  4. 4.
    Amodeo V, Bazan V, Fanale D, Insalaco L, Caruso S, Cicero G et al (2013) Effects of anti-miR-182 on TSP-1 expression in human colon cancer cells: there is a sense in antisense? Expert Opin Ther Targets 17(11):1249–1261.  https://doi.org/10.1517/14728222.2013.832206 CrossRefPubMedGoogle Scholar
  5. 5.
    Bronte F, Bronte G, Fanale D, Caruso S, Bronte E, Bavetta MG et al (2016) HepatomiRNoma: the proposal of a new network of targets for diagnosis, prognosis and therapy in hepatocellular carcinoma. Crit Rev Oncol Hematol 97:312–321.  https://doi.org/10.1016/j.critrevonc.2015.09.007. CrossRefPubMedGoogle Scholar
  6. 6.
    Fanale D, Amodeo V, Bazan V, Insalaco L, Incorvaia L, Barraco N et al (2016) Can the microRNA expression profile help to identify novel targets for zoledronic acid in breast cancer? Oncotarget 7(20).  https://doi.org/10.18632/oncotarget.8722
  7. 7.
    Cabibi D, Caruso S, Bazan V, Castiglia M, Bronte G, Ingrao S et al (2016) Analysis of tissue and circulating microRNA expression during metaplastic transformation of the esophagus. Oncotarget 7(30).  https://doi.org/10.18632/oncotarget.10291
  8. 8.
    Fanale D, Barraco N, Listì A, Bazan V, Russo A (2016) Non-coding RNAs functioning in colorectal cancer stem cells. Adv Exp Med Biol 937:93–108.  https://doi.org/10.1007/978-3-319-42059-2_5 CrossRefPubMedGoogle Scholar
  9. 9.
    Fanale D, Castiglia M, Bazan V, Russo A (2016) Involvement of non-coding RNAs in chemo- and radioresistance of. Colorectal Cancer 937:207–228.  https://doi.org/10.1007/978-3-319-42059-2_11 CrossRefGoogle Scholar
  10. 10.
    Rizzo S, Cangemi A, Galvano A, Fanale D, Buscemi S, Ciaccio M et al (2017) Analysis of miRNA expression profile induced by short term starvation in breast cancer cells treated with doxorubicin. Oncotarget 8(42).  https://doi.org/10.18632/oncotarget.18028
  11. 11.
    Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:1–12.  https://doi.org/10.1038/srep30919 CrossRefGoogle Scholar
  12. 12.
    Chen L, Huang C, Wang X, Shan G (2015) Circular RNAs in eukaryotic cells. Curr Genomics 16(5):312–318.  https://doi.org/10.2174/1389202916666150707161554 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838–1847.  https://doi.org/10.1242/dev.128074 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gao Y, Wang J, Zheng Y, Zhang J, Chen S, Zhao F (2016) Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun 7:12060.  https://doi.org/10.1038/ncomms12060 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang Y, Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs. RNA 21(2):172–179.  https://doi.org/10.1261/rna.048272.114 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen C, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268(5209):415–417.  https://doi.org/10.1126/science.7536344 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Huang S, Yang B, Chen BJ, Bliim N, Ueberham U, Arendt T et al (2017) The emerging role of circular RNAs in transcriptome regulation. Genomics 109(5–6):401–407.  https://doi.org/10.1016/j.ygeno.2017.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J et al (2012) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157.  https://doi.org/10.1261/rna.035667.112 CrossRefPubMedGoogle Scholar
  19. 19.
    Ashwal-Fluss R, Meyer M, Pamudurti Nagarjuna R, Ivanov A, Bartok O, Hanan M et al (2014) circRNA Biogenesis competes with Pre-mRNA splicing. Mol Cell 56(1):55–66.  https://doi.org/10.1016/j.molcel.2014.08.019 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Conn Simon J, Pillman Katherine A, Toubia J, Conn Vanessa M, Salmanidis M, Phillips Caroline A et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134.  https://doi.org/10.1016/j.cell.2015.02.014 CrossRefPubMedGoogle Scholar
  21. 21.
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338.  https://doi.org/10.1038/nature11928 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215.  https://doi.org/10.1038/ncomms11215 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hou L-D, Zhang J (2017) Circular RNAs: an emerging type of RNA in cancer. Int J Immunopathol Pharmacol 30(1):1–6.  https://doi.org/10.1177/0394632016686985 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Moran JV, Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777.  https://doi.org/10.1371/journal.pgen.1003777 CrossRefGoogle Scholar
  25. 25.
    Xu Z, Yan Y, Zeng S, Dai S, Chen X, Wei J et al (2017) Circular RNAs: clinical relevance in cancer. Oncotarget 9(1).  https://doi.org/10.18632/oncotarget.22846
  26. 26.
    Kristensen LS, Hansen TB, Venø MT, Kjems J (2017) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37(5):555–565.  https://doi.org/10.1038/onc.2017.361 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Greene J, Baird A-M, Brady L, Lim M, Gray SG, McDermott R et al (2017) Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci 4.  https://doi.org/10.3389/fmolb.2017.00038
  28. 28.
    Arnberg AC, Van Ommen GJB, Grivell LA, Van Bruggen EFJ, Borst P (1980) Some yeast mitochondrial RNAs are circular. Cell 19(2):313–319.  https://doi.org/10.1016/0092-8674(80)90505-x CrossRefPubMedGoogle Scholar
  29. 29.
    Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030.  https://doi.org/10.1016/0092-8674(93)90279-y CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Haque S, Circular LWH (2017) RNAs (circRNAs) in health and disease. Genes 8(12):353.  https://doi.org/10.3390/genes8120353 CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Xu H, Guo S, Li W, Yu P (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5(1).  https://doi.org/10.1038/srep12453
  32. 32.
    Chen I, Chen C-Y, Chuang T-J (2015) Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev RNA 6(5):563–579.  https://doi.org/10.1002/wrna.1294 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kulcheski FR, Christoff AP, Margis R (2016) Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 238:42–51.  https://doi.org/10.1016/j.jbiotec.2016.09.011 CrossRefGoogle Scholar
  34. 34.
    Zhu L-P, He Y-J, Hou J-C, Chen X, Zhou S-Y, Yang S-J et al (2017) The role of circRNAs in cancers. Biosci Rep 37(5):BSR20170750.  https://doi.org/10.1042/bsr20170750 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pant S, Hilton H, Burczynski ME (2012) The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol 83(11):1484–1494.  https://doi.org/10.1016/j.bcp.2011.12.037 CrossRefGoogle Scholar
  36. 36.
    Li S, Li Y, Chen B, Zhao J, Yu S, Tang Y et al (2018) exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res 46(D1):D106–DD12.  https://doi.org/10.1093/nar/gkx891 CrossRefPubMedGoogle Scholar
  37. 37.
    Siegel RL, Sahar L, Portier KM, Ward EM, Jemal A (2015) Cancer death rates in US congressional districts. CA Cancer J Clin 65(5):339–344CrossRefGoogle Scholar
  38. 38.
    Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B (2018) Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol 20(6):18.  https://doi.org/10.3389/fcell.2018.00018 CrossRefGoogle Scholar
  39. 39.
    Taverna S, Pucci M, Alessandro R (2017) Extracellular vesicles: small bricks for tissue repair/regeneration. Ann Transl Med 5(4):83.  https://doi.org/10.21037/atm.2017.01.53 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164(6):1226–1232.  https://doi.org/10.1016/j.cell.2016.01.043 CrossRefGoogle Scholar
  41. 41.
    Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13(3):269–288.  https://doi.org/10.1111/j.1365-2141.1967.tb08741.x CrossRefPubMedGoogle Scholar
  42. 42.
    Pan B-T, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978.  https://doi.org/10.1016/0092-8674(83)90040-5 CrossRefPubMedGoogle Scholar
  43. 43.
    Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30(1):255–289.  https://doi.org/10.1146/annurev-cellbio-101512-122326 CrossRefPubMedGoogle Scholar
  44. 44.
    Kowal J, Tkach M, Théry C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125.  https://doi.org/10.1016/j.ceb.2014.05.004 CrossRefPubMedGoogle Scholar
  45. 45.
    Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30(17):3481–3500.  https://doi.org/10.1038/emboj.2011.286 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Henne WM, Stenmark H, Emr SD (2013) Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol 5(9):a016766.  https://doi.org/10.1101/cshperspect.a016766 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Boukouris S, Mathivanan S (2015) Exosomes in bodily fluids are a highly stable resource of disease biomarkers. PROTEOMICS Clin Appl 9(3–4):358–367.  https://doi.org/10.1002/prca.201400114 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rodriguez-dorantes M, Romero-Cordoba S, Peralta-Zaragoza O, Salido-Guadarrama I, Hidalgo-Miranda A (2014) MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. OncoTargets Ther 7:1327.  https://doi.org/10.2147/ott.s61562 CrossRefGoogle Scholar
  49. 49.
    Li W, Li C, Zhou T, Liu X, Liu X, Li X et al (2017) Role of exosomal proteins in cancer diagnosis. Mol Cancer 16(1).  https://doi.org/10.1186/s12943-017-0706-8
  50. 50.
    Hessvik NP, Llorente A (2017) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75(2):193–208.  https://doi.org/10.1007/s00018-017-2595-9 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K et al (2016) ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 428(4):688–692.  https://doi.org/10.1016/j.jmb.2015.09.019 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Haraszti RA, Didiot M-C, Sapp E, Leszyk J, Shaffer SA, Rockwell HE et al (2016) High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles 5(1):32570.  https://doi.org/10.3402/jev.v5.32570 CrossRefPubMedGoogle Scholar
  53. 53.
    Simona F, Laura S, Simona T, Riccardo A (2013) Contribution of proteomics to understanding the role of tumor-derived exosomes in cancer progression: state of the art and new perspectives. Proteomics 13(10–11):1581–1594.  https://doi.org/10.1002/pmic.201200398 CrossRefPubMedGoogle Scholar
  54. 54.
    Nolte-‘t Hoen ENM, Buermans HPJ, Waasdorp M, Stoorvogel W, Wauben MHM, ‘t Hoen PAC. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 2012;40(18):9272–9285. doi: https://doi.org/10.1093/nar/gks658.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D (2017) Gorospe M. RNA in extracellular vesicles. Wiley Interdisciplinary Reviews RNA 8(4):e1413.  https://doi.org/10.1002/wrna.1413 CrossRefGoogle Scholar
  56. 56.
    Pucci M, Reclusa Asiáin P, Duréndez Sáez E, Jantus-Lewintre E, Malarani M, Khan S et al (2018) Extracellular vesicles as miRNA nano-shuttles: dual role in tumor progression. Target Oncol.  https://doi.org/10.1007/s11523-018-0551-8 CrossRefGoogle Scholar
  57. 57.
    Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB (2018) The RNA exosome and RNA exosome-linked disease. RNA 24(2):127–142.  https://doi.org/10.1261/rna.064626.117 CrossRefPubMedGoogle Scholar
  58. 58.
    Ruivo CF, Adem B, Silva M, Melo SA (2017) The biology of cancer exosomes: insights and new perspectives. Cancer Res 77(23):6480–6488.  https://doi.org/10.1158/0008-5472.can-17-0994 CrossRefPubMedGoogle Scholar
  59. 59.
    Steinbichler TB, Dudás J, Riechelmann H, Skvortsova I-I (2017) The role of exosomes in cancer metastasis. Semin Cancer Biol 44:170–181.  https://doi.org/10.1016/j.semcancer.2017.02.006 CrossRefPubMedGoogle Scholar
  60. 60.
    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659.  https://doi.org/10.1038/ncb1596 CrossRefGoogle Scholar
  61. 61.
    He C, Zheng S, Luo Y, Wang B (2018) Exosome theranostics: biology and translational medicine. Theranostics 8(1):237–255.  https://doi.org/10.7150/thno.21945 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G et al (2015) Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J Extracell Vesicles 4(1):30087.  https://doi.org/10.3402/jev.v4.30087 CrossRefPubMedGoogle Scholar
  63. 63.
    Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S et al (2017) Methodological Guidelines to Study Extracellular Vesicles. Circ Res 120(10):1632–1648.  https://doi.org/10.1161/circresaha.117.309417 CrossRefPubMedGoogle Scholar
  64. 64.
    Reiner AT, Witwer KW, van Balkom BWM, de Beer J, Brodie C, Corteling RL et al (2017) Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med 6(8):1730–1739.  https://doi.org/10.1002/sctm.17-0055 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Taverna S, Giallombardo M, Gil-Bazo I, Carreca AP, Castiglia M, Chacártegui J et al (2016) Exosomes isolation and characterization in serum is feasible in non-small cell lung cancer patients: critical analysis of evidence and potential role in clinical practice. Oncotarget 7(19):28748–28760.  https://doi.org/10.18632/oncotarget.7638 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73(18):5609–5612.  https://doi.org/10.1158/0008-5472.can-13-1568 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Peng LI, Yuan XQ, Li GC (2015) The emerging landscape of circular RNA ciRS-7 in cancer (Review). Oncol Rep 33(6):2669–2674.  https://doi.org/10.3892/or.2015.3904 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981–984.  https://doi.org/10.1038/cr.2015.82 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Dou Y, Cha DJ, Franklin JL, Higginbotham JN, Jeppesen DK, Weaver AM et al (2016) Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep 6(1):37982.  https://doi.org/10.1038/srep37982 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Qu S, Zhong Y, Shang R, Zhang X, Song W, Kjems J et al (2016) The emerging landscape of circular RNA in life processes. RNA Biol 14(8):992–999.  https://doi.org/10.1080/15476286.2016.1220473 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6(2):140–146.  https://doi.org/10.1016/j.molonc.2012.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Mayeux R (2004) Biomarkers potential uses and limitations. NeuroRx 1(2):182–188.  https://doi.org/10.1602/neurorx.1.2.182 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Rolfo C, Castiglia M, Hong D, Alessandro R, Mertens I, Baggerman G et al (2014) Liquid biopsies in lung cancer: the new ambrosia of researchers. Biochim Biophys Acta 1846(2):539–546.  https://doi.org/10.1016/j.bbcan.2014.10.001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Daniele Fanale
    • 1
  • Simona Taverna
    • 1
  • Antonio Russo
    • 1
  • Viviana Bazan
    • 1
  1. 1.Section of Medical Oncology, Department of Surgical, Oncological and Oral SciencesUniversity of PalermoPalermoItaly

Personalised recommendations