Advertisement

Functional Analysis of Circular RNAs

  • Shanmugapriya
  • Hisham Alkatib Huda
  • Soundararajan Vijayarathna
  • Chern Ein Oon
  • Yeng Chen
  • Jagat R. Kanwar
  • Mei Li Ng
  • Sreenivasan Sasidharan
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)

Abstract

Circular RNAs characterize a class of widespread and diverse endogenous RNAs which are non-coding RNAs that are made by back-splicing events and have covalently closed loops with no polyadenylated tails. Various indications specify that circular RNAs (circRNAs) are plentiful in the human transcriptome. However, their participation in biological processes remains mostly undescribed. To date thousands of circRNAs have been revealed in organisms ranging from Drosophila melanogaster to Homo sapiens. Functional studies specify that these transcripts control expression of protein-coding linear transcripts and thus encompass a key component of gene expression regulation. This chapter provide a comprehensive overview on functional validation of circRNAs. Furthermore, we discuss the recent modern methodologies for the functional validation of circRNAs such as RNA interference (RNAi) gene silencing assay, luciferase reporter assays, circRNA gain-of-function investigation via overexpression of circular transcript assay, RT-q-PCR quantification, and other latest applicable assays. The methods described in this chapter are demonstrated on the cellular model.

Keywords

CircRNAs Functional validation Cellular model 

Notes

Acknowledgements

Shanmugapriya was supported by the Graduate Research Assistance Scheme from Universiti Sains Malaysia, Malaysia.

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. 1.
    Nigro JM, Cho KR, Fearon ER et al (1991) Scrambled exons. Cell 64(3):607–613CrossRefGoogle Scholar
  2. 2.
    Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461CrossRefGoogle Scholar
  3. 3.
    Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20(12):1829–1842CrossRefGoogle Scholar
  4. 4.
    Cocquerelle C, Mascrez B, Hetuin D et al (1993) Mis-splicing yields circular RNA molecules. FASEB J 7(1):155–160CrossRefGoogle Scholar
  5. 5.
    Li Y, Zheng QP, Bao CY et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981–984CrossRefGoogle Scholar
  6. 6.
    Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670CrossRefGoogle Scholar
  7. 7.
    Rybak-Wolf A, Stottmeister C, Glazar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885CrossRefGoogle Scholar
  8. 8.
    Westholm JO, Miura P, Olson S et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980CrossRefGoogle Scholar
  9. 9.
    Conn SJ, Pillman KA, Toubia J et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134CrossRefGoogle Scholar
  10. 10.
    Kramer MC, Liang D, Tatomer DC et al (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev 29(20):2168–2182CrossRefGoogle Scholar
  11. 11.
    Koopman P, Munsterberg A, Capel B et al (1990) Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348(6300):450–452CrossRefGoogle Scholar
  12. 12.
    Cocquerelle C, Daubersies P, Majerus MA et al (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J 11(3):1095–1098CrossRefGoogle Scholar
  13. 13.
    Guo J (2014) Transcription: the epicenter of gene expression. J Zhejiang Univ Sci B 15(5):409–411CrossRefGoogle Scholar
  14. 14.
    Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733CrossRefGoogle Scholar
  15. 15.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338CrossRefGoogle Scholar
  16. 16.
    Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–U130CrossRefGoogle Scholar
  17. 17.
    Lu T, Cui L, Zhou Y et al (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21(12):2076–2087CrossRefGoogle Scholar
  18. 18.
    Saad FA, Vitiello L, Merlini L et al (1992) A 3′ consensus splice mutation in the human dystrophin gene detected by a screening for intra-exonic deletions. Hum Mol Genet 1(5):345–346CrossRefGoogle Scholar
  19. 19.
    Bailleul B (1996) During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles. Nucleic Acids Res 24(6):1015–1019CrossRefGoogle Scholar
  20. 20.
    Hansen TB, Wiklund ED, Bramsen JB et al (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30(21):4414–4422CrossRefGoogle Scholar
  21. 21.
    Zaphiropoulos PG (1997) Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol Cell Biol 17(6):2985–2993CrossRefGoogle Scholar
  22. 22.
    Houseley JM, Garcia-Casado Z, Pascual M et al (2006) Noncanonical RNAs from transcripts of the Drosophila muscleblind gene. J Hered 97(3):253–260CrossRefGoogle Scholar
  23. 23.
    Li XF, Lytton J (1999) A circularized sodium-calcium exchanger exon 2 transcript. J Biol Chem 274(12):8153–8160CrossRefGoogle Scholar
  24. 24.
    Hooper JE (2014) A survey of software for genome-wide discovery of differential splicing in RNA-Seq data. Hum Genomics 8:3CrossRefGoogle Scholar
  25. 25.
    Kulpa D, Topping R, Telesnitsky A (1997) Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors. EMBO J 16(4):856–865CrossRefGoogle Scholar
  26. 26.
    Agabian N (1990) Trans splicing of nuclear pre-mRNAs. Cell 61(7):1157–1160CrossRefGoogle Scholar
  27. 27.
    Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030CrossRefGoogle Scholar
  28. 28.
    Awan AR, Manfredo A, Pleiss JA (2013) Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans. Proc Natl Acad Sci U S A 110(31):12762–12767CrossRefGoogle Scholar
  29. 29.
    Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157CrossRefGoogle Scholar
  30. 30.
    Sanger HL, Klotz G, Riesner D et al (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73(11):3852–3856CrossRefGoogle Scholar
  31. 31.
    Ruskin B, Krainer AR, Maniatis T et al (1984) Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38(1):317–331CrossRefGoogle Scholar
  32. 32.
    Tabak HF, Van der Horst G, Smit J et al (1988) Discrimination between RNA circles, interlocked RNA circles and lariats using two-dimensional polyacrylamide gel electrophoresis. Nucleic Acids Res 16(14A):6597–6605CrossRefGoogle Scholar
  33. 33.
    Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264CrossRefGoogle Scholar
  34. 34.
    Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247CrossRefGoogle Scholar
  35. 35.
    Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611CrossRefGoogle Scholar
  36. 36.
    Zheng QP, Bao CY, Guo WJ et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215CrossRefGoogle Scholar
  37. 37.
    Liu Q, Zhang X, Hu XQ et al (2016) Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 ‘Sponge’ in human cartilage degradation. Sci Rep 6:22572CrossRefGoogle Scholar
  38. 38.
    Xie H, Ren X, Xin S et al (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7(18):26680–26691PubMedPubMedCentralGoogle Scholar
  39. 39.
    Thomas LF, Saetrom P (2014) Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics 30(16):2243–2246CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Xue W, Li X et al (2016) The biogenesis of nascent circular RNAs. Cell Rep 15(3):611–624CrossRefGoogle Scholar
  41. 41.
    Zhang XO, Wang HB, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147CrossRefGoogle Scholar
  42. 42.
    Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66CrossRefGoogle Scholar
  43. 43.
    Holt CE, Schuman EM (2013) The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80(3):648–657CrossRefGoogle Scholar
  44. 44.
    Denzler R, Agarwal V, Stefano J et al (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54(5):766–776CrossRefGoogle Scholar
  45. 45.
    Du WW, Yang W, Chen Y et al (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38(18):1402–1412Google Scholar
  46. 46.
    Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858CrossRefGoogle Scholar
  47. 47.
    Chen CY, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268(5209):415–417CrossRefGoogle Scholar
  48. 48.
    Panda AC, Abdelmohsen K, Gorospe M (2017) RT-qPCR detection of senescence-associated circular RNAs. Methods Mol Biol 1534:79–87CrossRefGoogle Scholar
  49. 49.
    Orlando C, Pinzani P, Pazzagli M (1998) Developments in quantitative PCR. Clin Chem Lab Med 36(5):255–269CrossRefGoogle Scholar
  50. 50.
    Valasek MA, Repa JJ (2005) The power of real-time PCR. Adv Physiol Educ 29(3):151–159CrossRefGoogle Scholar
  51. 51.
    Wong M, Medrano J (2005) Real-time PCR for mRNA quantitation. BioTechniques 39(1):75–85CrossRefGoogle Scholar
  52. 52.
    Bachmayr-Heyda A, Reiner AT, Auer K et al (2015) Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5:8057CrossRefGoogle Scholar
  53. 53.
    Tajadini M, Panjehpour M, Javanmard SH (2014) Comparison of SYBR green and TaqMan methods in quantitative real-time polymerase chain reaction analysis of four adenosine receptor subtypes. Adv Biomed Res 3:85CrossRefGoogle Scholar
  54. 54.
    Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in Cancer. Cancer Res 73(18):5609–5612CrossRefGoogle Scholar
  55. 55.
    Zhang Y, Zhang XO, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806CrossRefGoogle Scholar
  56. 56.
    Suzuki H, Tsukahara T (2014) A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci 15(6):9331–9342CrossRefGoogle Scholar
  57. 57.
    Suzuki H, Zuo YH, Wang JH et al (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34(8):e63CrossRefGoogle Scholar
  58. 58.
    Li Y, Chen B, Huang S (2018) Identification of circRNAs for miRNA targets by Argonaute2 RNA immunoprecipitation and luciferase screening assays. Methods Mol Biol 1724:209–218CrossRefGoogle Scholar
  59. 59.
    Zeng X, Lin W, Guo M et al (2017) A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol 13(6):e1005420CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shanmugapriya
    • 1
  • Hisham Alkatib Huda
    • 1
  • Soundararajan Vijayarathna
    • 1
  • Chern Ein Oon
    • 1
  • Yeng Chen
    • 2
  • Jagat R. Kanwar
    • 3
  • Mei Li Ng
    • 4
  • Sreenivasan Sasidharan
    • 1
  1. 1.Institute for Research in Molecular Medicine (INFORMM)Universiti Sains MalaysiaPulau PinangMalaysia
  2. 2.Faculty of Dentistry, Dental Research & Training Unit, and Oral Cancer Research and Coordinating Centre (OCRCC)University of MalayaKuala LumpurMalaysia
  3. 3.Faculty of Health, Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR), School of Medicine (SoM)Deakin UniversityGeelongAustralia
  4. 4.Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI)Universiti Sains MalaysiaPulau PinangMalaysia

Personalised recommendations