Advertisement

Circular RNAs pp 299-308 | Cite as

Functional Role of Circular RNA in Regenerative Medicine

  • Richard Y. Cao
  • Qiying Dai
  • Qing Li
  • Jian Yang
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)

Abstract

Every year, millions of people around the world suffer from different forms of tissue trauma. Regenerative medicine refers to therapy that replaces the injured organ or cells. Stem cells are the frontiers and hotspots of current regenerative medicine research. Circular RNAs (circRNAs) are essential for the early development of many species. It was found that they could guide stem cell differentiation through interacting with certain microRNAs (miRNAs). Based on this concept, it is meaningful to look into how circRNAs influence stem cells and its role in regenerative medicine. In this chapter we will discuss the functional roles of circRNAs in the prevention, repair, or progression of chronic diseases, through the communication between stem cells.

Keywords

Circular RNA Regenerative medicine Stem cell 

Notes

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS et al (2015) Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322Google Scholar
  2. 2.
    Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regen Med 3(1):1–5CrossRefGoogle Scholar
  3. 3.
    Keshtkar S, Azarpira N, Ghahremani MH (2018) Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther 9(1):63PubMedCentralCrossRefGoogle Scholar
  4. 4.
    Daley GQ, Scadden DT (2008) Prospects for stem cell-based therapy. Cell 132(4):544–548CrossRefGoogle Scholar
  5. 5.
    Arjmand B, Goodarzi P, Mohamadi-Jahani F et al (2017) Personalized regenerative medicine. Acta Med Iran 55(3):144–149Google Scholar
  6. 6.
    Dushnik-Levinson M, Benvenisty N (1995) Embryogenesis in vitro: study of differentiation of embryonic stem cells. Biol Neonate 67(2):77–83CrossRefGoogle Scholar
  7. 7.
    Fox IJ, Daley GQ, Goldman SA et al (2014) Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science 345(6199):1247391PubMedCentralCrossRefGoogle Scholar
  8. 8.
    Li F, Zhang L, Li W et al (2015) Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway. Oncotarget 6(8):6001–6013PubMedCentralPubMedGoogle Scholar
  9. 9.
    Yang W, Du WW, Li X et al (2016) Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 35(30):3919–3931CrossRefGoogle Scholar
  10. 10.
    Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5(2):351–358CrossRefGoogle Scholar
  11. 11.
    Itskovitz-Eldor J, Schuldiner M, Karsenti D et al (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6(2):88–95PubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zheng Q, Bao C, Guo W et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215PubMedCentralCrossRefGoogle Scholar
  13. 13.
    Spector M (2018) Biomedical materials to meet the challenges of the aging epidemic. Biomed Mater 13(3):030201CrossRefGoogle Scholar
  14. 14.
    McMahon DS, Thorsteinsdottir H, Singer PA et al (2010) Cultivating regenerative medicine innovation in China. Regen Med 5(1):35–44CrossRefGoogle Scholar
  15. 15.
    Mironov V, Visconti RP, Markwald RR (2004) What is regenerative medicine? Emergence of applied stem cell and developmental biology. Expert Opin Biol Ther 4(6):773–781CrossRefGoogle Scholar
  16. 16.
    Kemp P (2006) History of regenerative medicine: looking backwards to move forwards. Regen Med 1(5):653–669CrossRefGoogle Scholar
  17. 17.
    Buganim Y (2016) Back to basics: refined nuclear reprogramming techniques yield higher-quality stem cells. Science 352(6292):1401CrossRefGoogle Scholar
  18. 18.
    Niwa H (2018) The principles that govern transcription factor network functions in stem cells. Development 145(6):dev157420CrossRefGoogle Scholar
  19. 19.
    Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920CrossRefGoogle Scholar
  20. 20.
    Thrall JH (2004) Personalized medicine. Radiology 231(3):613–616CrossRefGoogle Scholar
  21. 21.
    Murphy MJ, Shahriari N, Payette M et al (2016) Development of a curriculum in molecular diagnostics, genomics and personalized medicine for dermatology trainees. J Cutan Pathol 43(10):858–865CrossRefGoogle Scholar
  22. 22.
    Terzic A, Nelson TJ (2010) Regenerative medicine advancing health care 2020. J Am Coll Cardiol 55(20):2254–2257CrossRefGoogle Scholar
  23. 23.
    Das AK, Pal R (2010) Induced pluripotent stem cells (iPSCs): the emergence of a new champion in stem cell technology-driven biomedical applications. J Tissue Eng Regen Med 4(6):413–421Google Scholar
  24. 24.
    Terzic A, Nelson TJ (2013) Regenerative medicine primer. Mayo Clin Proc 88(7):766–775CrossRefGoogle Scholar
  25. 25.
    Kordelas L, da Silva Nardi F, Wagner B, et al (2018) Elevated soluble human leukocyte antigen G levels in patients after allogeneic stem cell transplantation are associated with less severe acute and chronic graft-versus-host disease. Bone Marrow Transplant:  https://doi.org/10.1038/s41409-018-0145-1CrossRefGoogle Scholar
  26. 26.
    Safinia N, Grageda N, Scotta C et al (2018) Cell therapy in organ transplantation: our experience on the clinical translation of regulatory T cells. Front Immunol 9:354PubMedCentralCrossRefGoogle Scholar
  27. 27.
    Lo Monaco M, Merckx G, Ratajczak J et al (2018) Stem cells for cartilage repair: preclinical studies and insights in translational animal models and outcome measures. Stem Cells Int 2018:9079538PubMedCentralCrossRefGoogle Scholar
  28. 28.
    Esteban MA, Wang T, Qin B et al (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6(1):71–79CrossRefGoogle Scholar
  29. 29.
    Onteniente B (2013) The multiple aspects of stroke and stem cell therapy. Curr Mol Med 13(5):821–831CrossRefGoogle Scholar
  30. 30.
    Zhang M, Ngo J, Pirozzi F et al (2018) Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells. Stem Cell Res Ther 9(1):67PubMedCentralCrossRefGoogle Scholar
  31. 31.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156PubMedCentralCrossRefGoogle Scholar
  32. 32.
    Alison MR, Islam S (2009) Attributes of adult stem cells. J Pathol 217(2):144–160CrossRefGoogle Scholar
  33. 33.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147CrossRefGoogle Scholar
  34. 34.
    Shamblott MJ, Axelman J, Wang S et al (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 95(23):13726–13731PubMedCentralCrossRefGoogle Scholar
  35. 35.
    Fagoonee S, Hobbs RM, De Chiara L et al (2010) Generation of functional hepatocytes from mouse germ line cell-derived pluripotent stem cells in vitro. Stem Cells Dev 19(8):1183–1194CrossRefGoogle Scholar
  36. 36.
    Fagoonee S, Pellicano R, Altruda F (2010) Stem cell world 2010: crucial questions from clinicians to biologists. Panminerva Med 52(2):95–96PubMedGoogle Scholar
  37. 37.
    Butler AE, Huang A, Rao PN et al (2007) Hematopoietic stem cells derived from adult donors are not a source of pancreatic beta-cells in adult nondiabetic humans. Diabetes 56(7):1810–1816CrossRefGoogle Scholar
  38. 38.
    Alonso-Ferrero ME, van Til NP, Bartolovic K et al (2018) Enhancement of mouse hematopoietic stem/progenitor cell function via transient gene delivery using integration-deficient lentiviral vectors. Exp Hematol 57:21–29PubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wang Y, Tian H, Cai W et al (2018) Tracking hematopoietic precursor division ex vivo in real time. Stem Cell Res Ther 9(1):16PubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kemp CB, Knight MJ, Scharp DW et al (1973) Transplantation of isolated pancreatic islets into the portal vein of diabetic rats. Nature 244(5416):447CrossRefGoogle Scholar
  41. 41.
    Ricordi C, Lacy PE, Finke EH et al (1988) Automated method for isolation of human pancreatic islets. Diabetes 37(4):413–420CrossRefGoogle Scholar
  42. 42.
    Ryan EA, Paty BW, Senior PA et al (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54(7):2060–2069CrossRefGoogle Scholar
  43. 43.
    Lacotte S, Berney T, Shapiro AJ et al (2011) Immune monitoring of pancreatic islet graft: towards a better understanding, detection and treatment of harmful events. Expert Opin Biol Ther 11(1):55–66CrossRefGoogle Scholar
  44. 44.
    Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354(17):1813–1826CrossRefGoogle Scholar
  45. 45.
    Corbett MS, Webster A, Hawkins R et al (2017) Innovative regenerative medicines in the EU: a better future in evidence? BMC Med 15(1):49PubMedCentralCrossRefGoogle Scholar
  46. 46.
    Nishiga M, Guo H, Wu JC (2018) Induced pluripotent stem cells as a biopharmaceutical factory for extracellular vesicles. Eur Heart J 39:1848.  https://doi.org/10.1093/eurheartj/ehy097CrossRefPubMedGoogle Scholar
  47. 47.
    Giacalone JC, Sharma TP, Burnight ER et al (2018) CRISPR-Cas9-based genome editing of human induced pluripotent stem cells. Curr Protoc Stem Cell Biol 44:5B 7 1–5B 7 22CrossRefGoogle Scholar
  48. 48.
    Moldovan L, Barnard A, Gil CH et al (2017) iPSC-derived vascular cell spheroids as building blocks for scaffold-free biofabrication. Biotechnol J 12(12):1700444CrossRefGoogle Scholar
  49. 49.
    Sangeetha KN, Sujatha S, Muthusamy VS et al (2017) Current trends in small molecule discovery targeting key cellular signaling events towards the combined management of diabetes and obesity. Bioinformation 13(12):394–399PubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wolpaw AJ, Stockwell BR (2014) Multidimensional profiling in the investigation of small-molecule-induced cell death. Methods Enzymol 545:265–302CrossRefGoogle Scholar
  51. 51.
    Yamanaka S, Takahashi K (2006) Induction of pluripotent stem cells from mouse fibroblast cultures. Tanpakushitsu Kakusan Koso 51(15):2346–2351PubMedGoogle Scholar
  52. 52.
    Yao Y, Li S, Cao J et al (2018) Development of small molecule biosensors by coupling the recognition of the bacterial allosteric transcription factor with isothermal strand displacement amplification. Chem Commun (Camb) 54:4774.  https://doi.org/10.1039/C8CC01764FCrossRefGoogle Scholar
  53. 53.
    Li W, Li K, Wei W et al (2013) Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell 13(3):270–283PubMedCentralCrossRefGoogle Scholar
  54. 54.
    Marson A, Foreman R, Chevalier B et al (2008) Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3(2):132–135PubMedCentralCrossRefGoogle Scholar
  55. 55.
    D’Amour KA, Agulnick AD, Eliazer S et al (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23(12):1534–1541CrossRefGoogle Scholar
  56. 56.
    Efe JA, Hilcove S, Kim J et al (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 13(3):215–222CrossRefGoogle Scholar
  57. 57.
    Graf T (2011) Historical origins of transdifferentiation and reprogramming. Cell Stem Cell 9(6):504–516CrossRefGoogle Scholar
  58. 58.
    Sekiya S, Suzuki A (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475(7356):390–393CrossRefGoogle Scholar
  59. 59.
    Huang P, He Z, Ji S et al (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475(7356):386–389CrossRefGoogle Scholar
  60. 60.
    Saifan C, Nasr R, Mehta S et al (2013) Diabetes insipidus: a challenging diagnosis with new drug therapies. ISRN Nephrol 2013:797620PubMedCentralCrossRefGoogle Scholar
  61. 61.
    Devendra D, Liu E, Eisenbarth GS (2004) Type 1 diabetes: recent developments. BMJ 328(7442):750–754PubMedCentralCrossRefGoogle Scholar
  62. 62.
    Scharp DW, Lacy PE, Santiago JV et al (1990) Insulin independence after islet transplantation into type I diabetic patient. Diabetes 39(4):515–518CrossRefGoogle Scholar
  63. 63.
    Suberi M, McKeever WF (1977) Differential right hemispheric memory storage of emotional and non-emotional faces. Neuropsychologia 15(6):757–768CrossRefGoogle Scholar
  64. 64.
    Assady S, Maor G, Amit M et al (2001) Insulin production by human embryonic stem cells. Diabetes 50(8):1691–1697CrossRefGoogle Scholar
  65. 65.
    Lumelsky N, Blondel O, Laeng P et al (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292(5520):1389–1394CrossRefGoogle Scholar
  66. 66.
    Urban VS, Kiss J, Kovacs J et al (2008) Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26(1):244–253CrossRefGoogle Scholar
  67. 67.
    Strauer BE, Brehm M, Zeus T et al (2001) Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenschr 126(34–35):932–938CrossRefGoogle Scholar
  68. 68.
    Wu Q, Wang Y, Cao M et al (2012) Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proc Natl Acad Sci U S A 109(10):3938–3943PubMedCentralCrossRefGoogle Scholar
  69. 69.
    Matsumoto Y, Fishel R, Wickner RB (1990) Circular single-stranded RNA replicon in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 87(19):7628–7632PubMedCentralCrossRefGoogle Scholar
  70. 70.
    Pasman Z, Been MD, Garcia-Blanco MA (1996) Exon circularization in mammalian nuclear extracts. RNA 2(6):603–610PubMedCentralPubMedGoogle Scholar
  71. 71.
    Cocquerelle C, Daubersies P, Majerus MA et al (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J 11(3):1095–1098PubMedCentralCrossRefGoogle Scholar
  72. 72.
    Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030PubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zaphiropoulos PG (1997) Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol Cell Biol 17(6):2985–2993PubMedCentralCrossRefGoogle Scholar
  74. 74.
    Burd CE, Jeck WR, Liu Y et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233PubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wang PL, Bao Y, Yee MC et al (2014) Circular RNA is expressed across the eukaryotic tree of life. PLoS One 9(6):e90859PubMedCentralCrossRefGoogle Scholar
  76. 76.
    Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733PubMedCentralCrossRefGoogle Scholar
  77. 77.
    Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157PubMedCentralCrossRefGoogle Scholar
  78. 78.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338PubMedCentralCrossRefGoogle Scholar
  79. 79.
    Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409PubMedCentralCrossRefGoogle Scholar
  80. 80.
    Danan M, Schwartz S, Edelheit S et al (2012) Transcriptome-wide discovery of circular RNAs in archaea. Nucleic Acids Res 40(7):3131–3142PubMedCentralCrossRefGoogle Scholar
  81. 81.
    Zhang Y, Zhang XO, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806PubMedCentralCrossRefGoogle Scholar
  82. 82.
    Salzman J, Chen RE, Olsen MN et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777PubMedCentralCrossRefGoogle Scholar
  83. 83.
    Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358PubMedCentralCrossRefGoogle Scholar
  84. 84.
    Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110CrossRefGoogle Scholar
  85. 85.
    Hansen TB, Wiklund ED, Bramsen JB et al (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30(21):4414–4422PubMedCentralCrossRefGoogle Scholar
  86. 86.
    Peng Y, Song X, Zheng Y et al (2017) Circular RNA profiling reveals that circCOL3A1-859267 regulate type I collagen expression in photo aged human dermal fibroblasts. Biochem Biophys Res Commun 486(2):277–284CrossRefGoogle Scholar
  87. 87.
    Wilusz JE (2017) Circular RNAs: unexpected outputs of many protein-coding genes. RNA Biol 14(8):1007–1017CrossRefGoogle Scholar
  88. 88.
    Bohjanen PR, Colvin RA, Puttaraju M et al (1996) A small circular TAR RNA decoy specifically inhibits tat-activated HIV-1 transcription. Nucleic Acids Res 24(19):3733–3738PubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bolha L, Ravnik-Glavac M, Glavac D (2017) Circular RNAs: biogenesis, function, and a role as possible Cancer biomarkers. Int J Genomics 2017:6218353PubMedCentralCrossRefGoogle Scholar
  90. 90.
    Talhouarne GJ, Gall JG (2014) Lariat intronic RNAs in the cytoplasm of Xenopus tropicalis oocytes. RNA 20(9):1476–1487PubMedCentralCrossRefGoogle Scholar
  91. 91.
    Yang Y, Wang Z (2018) Constructing GFP-based reporter to study back splicing and translation of circular RNA. Methods Mol Biol 1724:107–118CrossRefGoogle Scholar
  92. 92.
    Yu CY, Li TC, Wu YY et al (2017) The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun 8(1):1149PubMedCentralCrossRefGoogle Scholar
  93. 93.
    Choi YJ, Lin CP, Ho JJ et al (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 13(11):1353–1360PubMedCentralCrossRefGoogle Scholar
  94. 94.
    Xu N, Papagiannakopoulos T, Pan G et al (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647–658CrossRefGoogle Scholar
  95. 95.
    Wu CS, Yu CY, Chuang CY et al (2014) Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency. Genome Res 24(1):25–36PubMedCentralCrossRefGoogle Scholar
  96. 96.
    Suzuki H, Zuo Y, Wang J et al (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34(8):e63PubMedCentralCrossRefGoogle Scholar
  97. 97.
    Buganim Y, Markoulaki S, van Wietmarschen N et al (2014) The developmental potential of iPSCs is greatly influenced by reprogramming factor selection. Cell Stem Cell 15(3):295–309PubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gabut M, Samavarchi-Tehrani P, Wang X et al (2011) An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147(1):132–146CrossRefGoogle Scholar
  99. 99.
    Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66PubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kawamura T, Suzuki J, Wang YV et al (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460(7259):1140–1144PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Richard Y. Cao
    • 1
  • Qiying Dai
    • 2
    • 3
  • Qing Li
    • 1
  • Jian Yang
    • 1
  1. 1.Zhongshan-Xuhui Hospital, Fudan University/Shanghai Clinical Research Center, Chinese Academy of SciencesShanghaiChina
  2. 2.MetroWest Medical CenterFraminghamUSA
  3. 3.Department of CardiologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations