Advertisement

Circular RNAs pp 287-297 | Cite as

Circular RNAs in Vascular Functions and Diseases

  • Shengguang Ding
  • Yujiao Zhu
  • Yajun Liang
  • Haitao Huang
  • Yiming Xu
  • Chongjun Zhong
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)

Abstract

Vascular disease is one of the top five causes of death and affects a variety of other diseases, such as heart, nervous system, and metabolic disorders. Vascular dysfunction is a hallmark of ischemia, cancer, and inflammatory diseases and can accelerate the progression of diseases. Circular RNAs (circRNAs) are a new type of noncoding RNAs with covalent bond ring structure, which have been reported to be abnormally expressed in many human diseases. circRNAs regulate gene expression through the sponging of microRNAs (miRNAs) and can also be used as disease biomarkers. Here we will summarize the functions of circRNAs in vascular diseases, including vascular dysfunction, atherosclerosis, diabetes mellitus-related retinal vascular dysfunction, chronic thromboembolic pulmonary hypertension, carotid atherosclerotic disease, hepatic vascular invasion in hepatocellular carcinoma, aortic aneurysm, coronary artery disease, and type 2 diabetes mellitus.

Keywords

Circular RNAs Vascular function Vascular diseases 

Notes

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. 1.
    Maiese K (2017) Harnessing the power of SIRT1 and non-coding RNAs in vascular disease. Curr Neurovasc Res 14(1):82–88PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Arokiasamy P, Uttamacharya KP et al (2017) Chronic noncommunicable diseases in 6 low- and middle-income countries: findings from wave 1 of the World Health Organization’s study on global ageing and adult health (SAGE). Am J Epidemiol 185(6):414–428PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Strazhesko I, Tkacheva O, Boytsov S et al (2015) Association of insulin resistance, arterial stiffness and telomere length in adults free of cardiovascular diseases. PLoS One 10(8):e0136676PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Minino AM, Murphy SL (2012) Death in the United States, 2010. NCHS Data Brief 99:1–8Google Scholar
  5. 5.
    Turtle JR (2000) The economic burden of insulin resistance. Int J Clin Pract Suppl(113):23–28Google Scholar
  6. 6.
    Mels CM, Schutte AE, Schutte R et al (2013) The link between vascular deterioration and branched chain amino acids in a population with high glycated haemoglobin: the SABPA study. Amino Acids 45(6):1405–1413PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Yao Z, Luo J, Hu K et al (2017) ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways. Mol Oncol 11(4):422–437PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Siddiqui R, Saleem S, Khan NA (2016) The effect of peptidic and non-peptidic proteasome inhibitors on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype. Exp Parasitol 168:16–24PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Christensen HM, Schou M, Goetze JP et al (2013) Body mass index in chronic heart failure: association with biomarkers of neurohormonal activation, inflammation and endothelial dysfunction. BMC Cardiovasc Disord 13:80PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Boeckel JN, Jae N, Heumuller AW et al (2015) Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res 117(10):884–890PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Health Quality O (2005) Biventricular pacing (cardiac resynchronization therapy): an evidence-based analysis. Ont Health Technol Assess Ser 5(13):1–60Google Scholar
  12. 12.
    Khafaji HA, Bener AB, Rizk NM et al (2012) Elevated serum leptin levels in patients with acute myocardial infarction; correlation with coronary angiographic and echocardiographic findings. BMC Res Notes 5:262PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kiuchi MG, Andrea BR, da Silva GR et al (2015) Pulmonary artery ablation to treat pulmonary arterial hypertension: a case report. J Med Case Rep 9:284PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Fang S, Guo H, Cheng Y et al (2018) circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1. Cell Death Dis 9(3):396PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Koide T, Nakanishi A, Ito I et al (1975) Hemodynamic and clinical significances of atrial fibrillation, pulmonary vascular resistance and left ventricular function in rheumatic mitral stenosis. Jpn Heart J 16(2):122–142PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lindsay DC, Holdright DR, Clarke D et al (1996) Endothelial control of lower limb blood flow in chronic heart failure. Heart 75(5):469–476PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pluta A, Strozecki P, Krintus M et al (2015) Left ventricular remodeling and arterial remodeling in patients with chronic kidney disease stage 1-3. Ren Fail 37(7):1105–1110PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Radauskaite G, Vaskelyte J, Jurkevicius R (2007) Progression of mitral regurgitation following ischemic mitral valve repair. Medicina (Kaunas) 43(8):619–622CrossRefGoogle Scholar
  19. 19.
    Rees W, Schuler S, Hummel M et al (1993) Heart transplantation in patients with muscular dystrophy associated with end-stage cardiomyopathy. J Heart Lung Transplant 12(5):804–807PubMedPubMedCentralGoogle Scholar
  20. 20.
    Scherbakov N, Sandek A, Martens-Lobenhoffer J et al (2012) Endothelial dysfunction of the peripheral vascular bed in the acute phase after ischemic stroke. Cerebrovasc Dis 33(1):37–46PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Song MG, Yang HS, Lee DH et al (2014) Mid-term results in patients having tricuspidization of the quadricuspid aortic valve. J Cardiothorac Surg 9:29PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zeng ZY, Gui C, Li L et al (2016) Effects of percutaneous coronary intervention on serum Angiopoietin-2 in patients with coronary heart disease. Chin Med J 129(6):631–635PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Chen Y, Li C, Tan C et al (2017) Circular RNA in human disease and their potential clinic significance. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 34(1):133–137PubMedPubMedCentralGoogle Scholar
  24. 24.
    Zheng Q, Bao C, Guo W et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Militello G, Weirick T, John D et al (2017) Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief Bioinform 18(5):780–788PubMedPubMedCentralGoogle Scholar
  26. 26.
    Haque S, Harries LW (2017) Circular RNAs (circRNAs) in health and disease. Genes (Basel) 8(12):353CrossRefGoogle Scholar
  27. 27.
    Qu S, Yang X, Li X et al (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365(2):141–148PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Mazzuca MQ, Wlodek ME, Dragomir NM et al (2010) Uteroplacental insufficiency programs regional vascular dysfunction and alters arterial stiffness in female offspring. J Physiol 588(Pt 11):1997–2010PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Maass PG, Glazar P, Memczak S et al (2017) A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl) 95(11):1179–1189CrossRefGoogle Scholar
  30. 30.
    Liu C, Yao MD, Li CP et al (2017) Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction. Theranostics 7(11):2863–2877PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Puro DG, Kohmoto R, Fujita Y et al (2016) Bioelectric impact of pathological angiogenesis on vascular function. Proc Natl Acad Sci U S A 113(35):9934–9939PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Carqueja IM, Sousa J, Mansilha A (2018) Vascular malformations: classification, diagnosis and treatment. Int Angiol 37(2):127.  https://doi.org/10.23736/S0392-9590.18.03961-5CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yang P, Qiu Z, Jiang Y et al (2016) Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/beta-catenin signaling pathway. Oncotarget 7(39):63449–63455PubMedPubMedCentralGoogle Scholar
  34. 34.
    Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11(1):39–46PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ding HX, Lv Z, Yuan Y et al (2018) The expression of circRNAs as a promising biomarker in the diagnosis and prognosis of human cancers: a systematic review and meta-analysis. Oncotarget 9(14):11824–11836PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Peng L, Chen G, Zhu Z et al (2017) Circular RNA ZNF609 functions as a competitive endogenous RNA to regulate AKT3 expression by sponging miR-150-5p in Hirschsprung’s disease. Oncotarget 8(1):808–818PubMedPubMedCentralGoogle Scholar
  37. 37.
    Sena CM, Pereira AM, Seica R (2013) Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim Biophys Acta 1832(12):2216–2231PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Burd CE, Jeck WR, Liu Y et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kumar L, Shamsuzzama HR et al (2017) Circular RNAs: the emerging class of non-coding RNAs and their potential role in human neurodegenerative diseases. Mol Neurobiol 54(9):7224–7234PubMedCrossRefGoogle Scholar
  40. 40.
    Li Y, Dong Y, Huang Z et al (2017) Computational identifying and characterizing circular RNAs and their associated genes in hepatocellular carcinoma. PLoS One 12(3):e0174436PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhao L, Varghese Z, Moorhead JF et al (2018) CD36 and lipid metabolism in the evolution of atherosclerosis. Br Med Bull 126:101.  https://doi.org/10.1093/bmb/ldy006CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Maiese K (2016) Disease onset and aging in the world of circular RNAs. J Transl Sci 2(6):327–329PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Traylor M, Makela KM, Kilarski LL et al (2014) A novel MMP12 locus is associated with large artery atherosclerotic stroke using a genome-wide age-at-onset informed approach. PLoS Genet 10(7):e1004469PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Holdt LM, Stahringer A, Sass K et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Li H, Li K, Lai W et al (2018) Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta 480:17–25PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Holdt LM, Teupser D (2012) Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arterioscler Thromb Vasc Biol 32(2):196–206PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Yang LP, Sun HL, Wu LM et al (2009) Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy. Invest Ophthalmol Vis Sci 50(5):2319–2327PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Wei L, Yin Z, Yuan Y et al (2010) A PKC-beta inhibitor treatment reverses cardiac microvascular barrier dysfunction in diabetic rats. Microvasc Res 80(1):158–165PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Takeda M, Mori F, Yoshida A et al (2001) Constitutive nitric oxide synthase is associated with retinal vascular permeability in early diabetic rats. Diabetologia 44(8):1043–1050PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kim J, Jo K, Kim CS et al (2017) Aster koraiensis extract prevents diabetes-induced retinal vascular dysfunction in spontaneously diabetic Torii rats. BMC Complement Altern Med 17(1):497PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Su W, Dai DZ, Liu HR et al (2007) Upregulated endothelin system in diabetic vascular dysfunction and early retinopathy is reversed by CPU0213 and total triterpene acids from Fructus Corni. Clin Exp Pharmacol Physiol 34(12):1228–1233PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Wondemagegn AT, Bizuayehu HM, Abie DD et al (2017) Undiagnosed diabetes mellitus and related factors in east Gojjam (NW Ethiopia) in 2016: a community-based study. J Public Health Res 6(1):834PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Herbreteau D, Brunereau L, Cottier J et al (1997) Hemangiomas and superficial vascular malformations of the head and neck. Classification, diagnosis, treatment. J Neuroradiol 24(4):274–290PubMedPubMedCentralGoogle Scholar
  54. 54.
    Shan K, Li CP, Liu C et al (2017) RNCR3: a regulator of diabetes mellitus-related retinal microvascular dysfunction. Biochem Biophys Res Commun 482(4):777–783PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Shan K, Liu C, Liu BH et al (2017) Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 136(17):1629–1642PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Chen G, Shi Y, Liu M et al (2018) circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis 9(2):175PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Li Y, Zheng F, Xiao X et al (2017) CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep 18(9):1646–1659PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Tian F, Wang Y, Xiao Z et al (2017) Circular RNA CircHIPK3 promotes NCI-H1299 and NCI-H2170 cell proliferation through miR-379 and its target IGF1. Zhongguo Fei Ai Za Zhi 20(7):459–467PubMedPubMedCentralGoogle Scholar
  59. 59.
    Pesavento R, Prandoni P (2018) Prevention and treatment of the chronic thromboembolic pulmonary hypertension. Thromb Res 164:150.  https://doi.org/10.1016/j.thromres.2018.02.149CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Aldabbous L, Abdul-Salam V, McKinnon T et al (2016) Neutrophil extracellular traps promote angiogenesis: evidence from vascular pathology in pulmonary hypertension. Arterioscler Thromb Vasc Biol 36(10):2078–2087PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Bonderman D, Jakowitsch J, Redwan B et al (2008) Role for staphylococci in misguided thrombus resolution of chronic thromboembolic pulmonary hypertension. Arterioscler Thromb Vasc Biol 28(4):678–684PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Chen Z, Nakajima T, Tanabe N et al (2010) Susceptibility to chronic thromboembolic pulmonary hypertension may be conferred by miR-759 via its targeted interaction with polymorphic fibrinogen alpha gene. Hum Genet 128(4):443–452PubMedCrossRefGoogle Scholar
  63. 63.
    Pesavento R, Prandoni P (2015) Prevention and treatment of the post-thrombotic syndrome and of the chronic thromboembolic pulmonary hypertension. Expert Rev Cardiovasc Ther 13(2):193–207PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Gu S, Li G, Zhang X et al (2015) Aberrant expression of long noncoding RNAs in chronic thromboembolic pulmonary hypertension. Mol Med Rep 11(4):2631–2643PubMedCrossRefGoogle Scholar
  65. 65.
    Guo L, Yang Y, Liu J et al (2014) Differentially expressed plasma microRNAs and the potential regulatory function of let-7b in chronic thromboembolic pulmonary hypertension. PLoS One 9(6):e101055PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mercier O, Sage E, Izziki M et al (2010) Endothelin a receptor blockade improves regression of flow-induced pulmonary vasculopathy in piglets. J Thorac Cardiovasc Surg 140(3):677–683PubMedCrossRefGoogle Scholar
  67. 67.
    Miao R, Wang Y, Wan J et al (2017) Microarray expression profile of circular RNAs in chronic thromboembolic pulmonary hypertension. Medicine (Baltimore) 96(27):e7354CrossRefGoogle Scholar
  68. 68.
    Miyata M, Ito M, Sasajima T et al (2001) Effect of a serotonin receptor antagonist on interleukin-6-induced pulmonary hypertension in rats. Chest 119(2):554–561PubMedCrossRefGoogle Scholar
  69. 69.
    Ogawa A, Firth AL, Yao W et al (2009) Inhibition of mTOR attenuates store-operated Ca2+ entry in cells from endarterectomized tissues of patients with chronic thromboembolic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 297(4):L666–L676PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wang L, Guo LJ, Liu J et al (2013) MicroRNA expression profile of pulmonary artery smooth muscle cells and the effect of let-7d in chronic thromboembolic pulmonary hypertension. Pulm Circ 3(3):654–664PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wynants M, Vengethasamy L, Ronisz A et al (2013) NF-kappaB pathway is involved in CRP-induced effects on pulmonary arterial endothelial cells in chronic thromboembolic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 305(12):L934–L942PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Yang M, Deng C, Wu D et al (2016) The role of mononuclear cell tissue factor and inflammatory cytokines in patients with chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis 42(1):38–45PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Zhang YM, Liu WJ, Shi YZ et al (2008) Expressions of urotensin II and its receptor in pulmonary arteries in rats with chronic thromboembolic pulmonary hypertension. Zhonghua Jie He He Hu Xi Za Zhi 31(1):37–41PubMedPubMedCentralGoogle Scholar
  74. 74.
    Qu S, Zhong Y, Shang R et al (2017) The emerging landscape of circular RNA in life processes. RNA Biol 14(8):992–999PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Fu C, Lv R, Xu G et al (2017) Circular RNA profile of infantile hemangioma by microarray analysis. PLoS One 12(11):e0187581PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zhou Z, Du D, Chen A et al (2018) Circular RNA expression profile of articular chondrocytes in an IL-1beta-induced mouse model of osteoarthritis. Gene 644:20–26PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Bhajun R, Guyon L, Pitaval A et al (2015) A statistically inferred microRNA network identifies breast cancer target miR-940 as an actin cytoskeleton regulator. Sci Rep 5:8336PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ding D, Zhang Y, Yang R et al (2016) miR-940 suppresses tumor cell invasion and migration via regulation of CXCR2 in hepatocellular carcinoma. Biomed Res Int 2016:7618342PubMedPubMedCentralGoogle Scholar
  79. 79.
    Zhang EY, Cristofanilli M, Robertson F et al (2013) Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer. J Proteome Res 12(6):2805–2817PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Jovanovic I, Zivkovic M, Jovanovic J et al (2014) The co-inertia approach in identification of specific microRNA in early and advanced atherosclerosis plaque. Med Hypotheses 83(1):11–15PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Rootman J, Heran MK, Graeb DA (2014) Vascular malformations of the orbit: classification and the role of imaging in diagnosis and treatment strategies*. Ophthal Plast Reconstr Surg 30(2):91–104PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Raitoharju E, Lyytikainen LP, Levula M et al (2011) miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the tampere vascular study. Atherosclerosis 219(1):211–217PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Bazan HA, Hatfield SA, Brug A et al (2017) Carotid plaque rupture is accompanied by an increase in the ratio of serum circR-284 to miR-221 levels. Circ Cardiovasc Genet 10(4):e001720PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Werner JA, Dunne AA, Folz BJ et al (2001) Current concepts in the classification, diagnosis and treatment of hemangiomas and vascular malformations of the head and neck. Eur Arch Otorhinolaryngol 258(3):141–149PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Altendorf-Hofmann A, Scheele J (2002) Indication and surgical outcome in hepatocellular carcinoma with infiltration of blood vessels, bile ducts and lymph nodes. Kongressbd Dtsch Ges Chir Kongr 119:635–641PubMedPubMedCentralGoogle Scholar
  86. 86.
    Yamashita Y, Shirabe K, Aishima S et al (2015) Predictors of microvascular invasion in hepatocellular carcinoma. Dig Dis 33(5):655–660PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Aravindhan V, Mohan V, Arunkumar N et al (2015) Chronic endotoxemia in subjects with type-1 diabetes is seen much before the onset of microvascular complications. PLoS One 10(9):e0137618PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Xu L, Zhang M, Zheng X et al (2017) The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol 143(1):17–27PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Shi Z, Chen T, Yao Q et al (2017) The circular RNA ciRS-7 promotes APP and BACE1 degradation in an NF-kappaB-dependent manner. FEBS J 284(7):1096–1109PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Su C, Han Y, Zhang H et al (2018) CiRS-7 targeting miR-7 modulates the progression of non-small cell lung cancer in a manner dependent on NF-kappaB signalling. J Cell Mol Med 22:3097.  https://doi.org/10.1111/jcmm.13587CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Barrett SP, Parker KR, Horn C et al (2017) ciRS-7 exonic sequence is embedded in a long non-coding RNA locus. PLoS Genet 13(12):e1007114PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Geng HH, Li R, Su YM et al (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 11(3):e0151753PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pan H, Li T, Jiang Y et al (2018) Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem 119(1):440–446PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Peng L, Yuan XQ, Li GC (2015) The emerging landscape of circular RNA ciRS-7 in cancer (review). Oncol Rep 33(6):2669–2674PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Xu H, Guo S, Li W et al (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Woo KI, Kim YD (2014) Re: “vascular malformations of the orbit: classification and the role of imaging in diagnosis and treatment strategies”. Ophthal Plast Reconstr Surg 30(6):532PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Guo X, Chang Q, Pei H et al (2017) Long non-coding RNA-mRNA correlation analysis reveals the potential role of HOTAIR in pathogenesis of sporadic thoracic aortic aneurysm. Eur J Vasc Endovasc Surg 54(3):303–314PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    He Q, Tan J, Yu B et al (2015) Long noncoding RNA HIF1A-AS1A reduces apoptosis of vascular smooth muscle cells: implications for the pathogenesis of thoracoabdominal aorta aneurysm. Pharmazie 70(5):310–315PubMedPubMedCentralGoogle Scholar
  99. 99.
    Li Y, Yang N (2018) Microarray expression profile analysis of long non-coding RNAs in thoracic aortic aneurysm. Kaohsiung J Med Sci 34(1):34–42PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Liu G, Huang Y, Lu X et al (2010) Identification and characteristics of microRNAs with altered expression patterns in a rat model of abdominal aortic aneurysms. Tohoku J Exp Med 222(3):187–193PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Iyer V, Rowbotham S, Biros E et al (2017) A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms. Atherosclerosis 261:78–89PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Joviliano EE, Ribeiro MS, Tenorio EJR (2017) MicroRNAs and current concepts on the pathogenesis of abdominal aortic aneurysm. Braz J Cardiovasc Surg 32(3):215–224PubMedPubMedCentralGoogle Scholar
  103. 103.
    Li Y, Maegdefessel L (2017) Non-coding RNA contribution to thoracic and abdominal aortic aneurysm disease development and progression. Front Physiol 8:429PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zheng C, Niu H, Li M et al (2015) Cyclic RNA hsacirc000595 regulates apoptosis of aortic smooth muscle cells. Mol Med Rep 12(5):6656–6662PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hu ZY, Luo JF, Zhong SL et al (2012) MicroRNAs expression in normal and dissected aortic tissue. Zhonghua Xin Xue Guan Bing Za Zhi 40(5):406–410PubMedPubMedCentralGoogle Scholar
  106. 106.
    Kolopp-Sarda MN, Miossec P (2018) Cryoglobulins: an update on detection, mechanisms and clinical contribution. Autoimmun Rev 17:457.  https://doi.org/10.1016/j.autrev.2017.11.035CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Howson JMM, Zhao W, Barnes DR et al (2017) Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat Genet 49(7):1113–1119PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Li C, Zhao L, Jiang W et al (2018) Correct microarray analysis approaches in ‘Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus’. Diab Vasc Dis Res 15(1):92–93PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Bunnag SC (2006) Implications of microcirculation-research based information on prevention and treatment of diabetes mellitus type 2: a perspective. Clin Hemorheol Microcirc 34(1–2):43–50PubMedPubMedCentralGoogle Scholar
  110. 110.
    Zhao Z, Li X, Li M (2018) Response to letter to the editor entitled ‘Correct microarray analysis approaches in “Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus”’. Diab Vasc Dis Res 15(2):169–170PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Bhavadharini B, Mahalakshmi MM, Maheswari K et al (2016) Use of capillary blood glucose for screening for gestational diabetes mellitus in resource-constrained settings. Acta Diabetol 53(1):91–97PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Li CY, Ma L, Yu B (2017) Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis. Biomed Pharmacother 95:1514–1519PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Dai ZM, Kang HF, Zhang WG et al (2016) The associations of single nucleotide polymorphisms in miR196a2, miR-499, and miR-608 with breast cancer susceptibility: a STROBE-compliant observational study. Medicine (Baltimore) 95(7):e2826CrossRefGoogle Scholar
  114. 114.
    Hashemi M, Sanaei S, Rezaei M et al (2016) miR-608 rs4919510 C>G polymorphism decreased the risk of breast cancer in an Iranian subpopulation. Exp Oncol 38(1):57–59PubMedPubMedCentralGoogle Scholar
  115. 115.
    Kupcinskas J, Bruzaite I, Juzenas S et al (2014) Lack of association between miR-27a, miR-146a, miR-196a-2, miR-492 and miR-608 gene polymorphisms and colorectal cancer. Sci Rep 4:5993PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Bao X, Zheng S, Mao S et al (2018) A potential risk factor of essential hypertension in case-control study: circular RNA hsa_circ_0037911. Biochem Biophys Res Commun 498:789.  https://doi.org/10.1016/j.bbrc.2018.03.059CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Wise IA, Charchar FJ (2016) Epigenetic modifications in essential hypertension. Int J Mol Sci 17(4):451PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Zhu HY, Wang SW, Martin LJ et al (2009) The role of mitochondrial genome in essential hypertension in a Chinese Han population. Eur J Hum Genet 17(11):1501–1506PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Dangwal S, Schimmel K, Foinquinos A et al (2017) Noncoding RNAs in heart failure. Handb Exp Pharmacol 243:423–445PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Hoebeeck LI, Rietzschel ER, Langlois M et al (2011) The relationship between diet and subclinical atherosclerosis: results from the Asklepios study. Eur J Clin Nutr 65(5):606–613PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Marques FZ, Booth SA, Charchar FJ (2015) The emerging role of non-coding RNA in essential hypertension and blood pressure regulation. J Hum Hypertens 29(8):459–467PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Marques FZ, Charchar FJ (2015) microRNAs in essential hypertension and blood pressure regulation. Adv Exp Med Biol 888:215–235PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Marques FZ, Morris BJ (2012) Neurogenic hypertension: revelations from genome-wide gene expression profiling. Curr Hypertens Rep 14(6):485–491PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Zou M, Huang C, Li X et al (2017) Circular RNA expression profile and potential function of hsa_circRNA_101238 in human thoracic aortic dissection. Oncotarget 8(47):81825–81837PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Stokowy T, Wojtas B, Fujarewicz K et al (2014) miRNAs with the potential to distinguish follicular thyroid carcinomas from benign follicular thyroid tumors: results of a meta-analysis. Horm Metab Res 46(3):171–180PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Xu RL, He W, Tang J et al (2018) Primate-specific miRNA-637 inhibited tumorigenesis in human pancreatic ductal adenocarcinoma cells by suppressing Akt1 expression. Exp Cell Res 363:310.  https://doi.org/10.1016/j.yexcr.2018.01.026CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Zhang JF, He ML, Fu WM et al (2011) Primate-specific microRNA-637 inhibits tumorigenesis in hepatocellular carcinoma by disrupting signal transducer and activator of transcription 3 signaling. Hepatology 54(6):2137–2148PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Li YM, Liu XY (2016) Molecular mechanisms underlying application of serum procalcitonin and stool miR-637 in prognosis of acute ischemic stroke. Am J Transl Res 8(10):4242–4249PubMedPubMedCentralGoogle Scholar
  129. 129.
    Que T, Song Y, Liu Z et al (2015) Decreased miRNA-637 is an unfavorable prognosis marker and promotes glioma cell growth, migration and invasion via direct targeting Akt1. Oncogene 34(38):4952–4963PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Sang HY, Jin YL, Zhang WQ et al (2016) Downregulation of microRNA-637 increases risk of hypoxia-induced pulmonary hypertension by modulating expression of Cyclin Dependent Kinase 6 (CDK6) in pulmonary smooth muscle cells. Med Sci Monit 22:4066–4072PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Salem ESB, Fan GC (2017) Pathological effects of exosomes in mediating diabetic cardiomyopathy. Adv Exp Med Biol 998:113–138PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Wu HJ, Zhang CY, Zhang S et al (2016) Microarray expression profile of circular RNAs in heart tissue of mice with myocardial infarction-induced heart failure. Cell Physiol Biochem 39(1):205–216PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Xu T, Wu J, Han P et al (2017) Circular RNA expression profiles and features in human tissues: a study using RNA-seq data. BMC Genomics 18(Suppl 6):680PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Muller S, Appel B (2017) In vitro circularization of RNA. RNA Biol 14(8):1018–1027PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Zhang HD, Jiang LH, Sun DW et al (2018) CircRNA: a novel type of biomarker for cancer. Breast Cancer 25(1):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Xin Z, Ma Q, Ren S et al (2017) The understanding of circular RNAs as special triggers in carcinogenesis. Brief Funct Genomics 16(2):80–86PubMedPubMedCentralGoogle Scholar
  137. 137.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Du WW, Yang W, Chen Y et al (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38(18):1402–1412PubMedGoogle Scholar
  139. 139.
    Chen J, Cui L, Yuan J et al (2017) Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochem Biophys Res Commun 494(1–2):126–132PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Li X, Zhao Z, Jian D et al (2017) Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus. Diab Vasc Dis Res 14(6):510–515PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shengguang Ding
    • 1
  • Yujiao Zhu
    • 2
    • 3
  • Yajun Liang
    • 2
    • 3
  • Haitao Huang
    • 1
  • Yiming Xu
    • 1
  • Chongjun Zhong
    • 1
  1. 1.Department of Thoracic and Cardiovascular SurgeryThe Second Affiliated Hospital of Nantong UniversityNantongChina
  2. 2.Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life ScienceShanghai UniversityShanghaiChina
  3. 3.Shanghai Key Laboratory of Bio-Energy Crops, School of Life SciencesShanghai UniversityShanghaiChina

Personalised recommendations