Skip to main content

Circular RNAs in Metabolic Diseases

  • Chapter
  • First Online:
Circular RNAs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1087))

Abstract

Metabolic diseases include diabetes mellitus (DM), obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD). Circular RNA is a new type of RNA that is different from traditional linear RNA and has a closed loop structure. However, the function of circular RNA is not yet well elucidated in metabolic diseases. Only a few studies have reported about the relationship between circular RNA and metabolic diseases such as DM and NAFLD. This chapter presents a brief review of epidemiology, pathophysiology, or treatment of DM and NAFLD and then discusses the relationship between circular RNA and DM or NAFLD. Besides, this chapter further provides an updated discussion of the most relevant discoveries regarding circular RNA and their potential applications in molecular diagnostics, nucleic acid therapy, and biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanger HL, Klotz G, Riesner D et al (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73(11):3852–3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  4. Afonina ZA, Myasnikov AG, Shirokov VA et al (2014) Formation of circular polyribosomes on eukaryotic mRNA without cap-structure and poly(A)-tail: a cryo electron tomography study. Nucleic Acids Res 42(14):9461–9469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jopling CL, Schutz S, Sarnow P (2008) Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4(1):77–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao Y, Alexandrov PN, Jaber V et al (2016) Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s Disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Genes (Basel) 7(12)

    Article  PubMed Central  Google Scholar 

  7. Liu Q, Zhang X, Hu X et al (2016) Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 ‘Sponge’ in human cartilage degradation. Sci Rep 6:22572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shan K, Liu C, Liu BH et al (2017) Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 136(17):1629–1642

    Article  CAS  PubMed  Google Scholar 

  9. Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611

    Article  CAS  PubMed  Google Scholar 

  10. Rottiers V, Naar AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13(4):239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perry RJ, Peng L, Barry NA et al (2016) Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534(7606):213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Afdhal NH (2012) Management of nonalcoholic fatty liver disease: a 60-year-old man with probable nonalcoholic fatty liver disease: weight reduction, liver biopsy, or both? JAMA 308(6):608–616

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez-Hernando C, Ramirez CM, Goedeke L et al (2013) MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol 33(2):178–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cho NH, Shaw JE, Karuranga S et al (2018) IDF diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281

    Article  CAS  PubMed  Google Scholar 

  15. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants (2016). The Lancet 387(10027):1513–1530.

    Google Scholar 

  16. Benjamin EJ, Virani SS, Callaway CW et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137:e67–e492

    Article  PubMed  Google Scholar 

  17. Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. The Lancet 389(10085):2239–2251

    Article  CAS  Google Scholar 

  18. Koekkoek PS, Kappelle LJ, van den Berg E et al (2015) Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol 14(3):329–340

    Article  PubMed  Google Scholar 

  19. Collier A, Ghosh S, Hair M et al (2015) Impact of socioeconomic status and gender on glycaemic control, cardiovascular risk factors and diabetes complications in type 1 and 2 diabetes: a population based analysis from a Scottish region. Diabetes Metab 41(2):145–151

    Article  CAS  PubMed  Google Scholar 

  20. Augustin K, Khabbush A, Williams S et al (2018) Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol 17(1):84–93

    Article  CAS  PubMed  Google Scholar 

  21. Kaczorowska M, Ryterska K, Ossowski P et al (2016) Metabolic risk factors of coronary heart disease in relation to anthropometric measures in nonalcoholic fatty liver disease patients following dietary intervention. Pomeranian J Life Sci 62(2):8–14

    Article  PubMed  Google Scholar 

  22. Organization WH Definition, Diagnosis and classification of diabetes mellitus and its complications part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation

    Google Scholar 

  23. Ghaemi N, Hasanabadi H, Ashrafzadeh F et al (2018) Peripheral neuropathy in children and adolescents with insulin-dependent diabetes Mellitus. Iran J Child Neurol 12(2):83–90

    PubMed  PubMed Central  Google Scholar 

  24. Packer M (2018) Heart failure: the most important, preventable, and treatable cardiovascular complication of type 2 diabetes. Diabetes Care 41(1):11–13

    Article  PubMed  Google Scholar 

  25. Shanbhogue VV, Hansen S, Frost M et al (2017) Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinol 5(10):827–838

    Article  PubMed  Google Scholar 

  26. Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383(9922):1068–1083

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi M, Zochodne DW (2018) Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications. J Diabetes Investig.

    Google Scholar 

  28. Kanwar YS, Sun L, Xie P et al (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schwartz SS, Epstein S, Corkey BE et al (2016) The time is right for a new classification system for diabetes: rationale and Implications of the beta-cell-centric classification schema. Diabetes Care 39(2):179–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148(6):1160–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwartz SS, Epstein S, Corkey BE et al (2017) A unified pathophysiological construct of diabetes and its complications. Trends Endocrinol Metab 28(9):645–655

    Article  CAS  PubMed  Google Scholar 

  32. Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230

    Article  CAS  PubMed  Google Scholar 

  33. Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389(3):305–312

    Article  CAS  PubMed  Google Scholar 

  34. Frost RJA, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc. Natl Acad Sci 108(52):21075–21080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pullen TJ, da Silva Xavier G, Kelsey G et al (2011) miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 31(15):3182–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trajkovski M, Hausser J, Soutschek J et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474(7353):649–653

    Article  CAS  PubMed  Google Scholar 

  37. Davalos A, Goedeke L, Smibert P et al (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 108(22):9232–9237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang J, Zhang L, Fan R et al (2013) The polymorphism in the let-7 targeted region of the Lin28 gene is associated with increased risk of type 2 diabetes mellitus. Mol Cell Endocrinol 375(1–2):53–57

    Article  CAS  PubMed  Google Scholar 

  39. Lightell DJ Jr, Moss SC, Woods TC (2018) Upregulation of miR-221 and -222 in response to increased extracellular signal-regulated kinases 1/2 activity exacerbates neointimal hyperplasia in diabetes mellitus. Atherosclerosis 269:71–78

    Article  CAS  PubMed  Google Scholar 

  40. Long Y, Zhan Q, Yuan M et al (2017) The expression of microRNA-223 and FAM5C in cerebral infarction patients with diabetes mellitus. Cardiovasc Toxicol 17(1):42–48

    Article  CAS  PubMed  Google Scholar 

  41. Xie H, Ren X, Xin S et al (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7(18):26680–26691

    PubMed  PubMed Central  Google Scholar 

  42. Han D, Li J, Wang H et al (2017) Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66(4):1151–1164

    Article  CAS  PubMed  Google Scholar 

  43. Zhou B, Yu JW (2017) A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta1. Biochem Biophys Res Commun 487(4):769–775

    Article  CAS  PubMed  Google Scholar 

  44. Heit JJ, Karnik SK, Kim SK (2006) Intrinsic regulators of pancreatic beta-cell proliferation. Annu Rev Cell Dev Biol 22:311–338

    Article  CAS  PubMed  Google Scholar 

  45. Stoll L, Sobel J, Rodriguez-Trejo A et al (2018) Circular RNAs as novel regulators of beta-cell functions in normal and disease conditions. Mol Metab 9:69–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu H, Guo S, Li W et al (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453

    Article  PubMed  PubMed Central  Google Scholar 

  47. Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6(2):140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Parrizas M, Novials A (2016) Circulating microRNAs as biomarkers for metabolic disease. Best Pract Res Clin Endocrinol Metab 30(5):591–601

    Article  CAS  PubMed  Google Scholar 

  49. Guil S, Esteller M (2015) RNA-RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem Sci 40(5):248–256

    Article  CAS  PubMed  Google Scholar 

  50. Hur K, Toiyama Y, Okugawa Y et al (2017) Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer. Gut 66(4):654–665

    Article  CAS  PubMed  Google Scholar 

  51. Karakas M, Schulte C, Appelbaum S et al (2017) Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur Heart J 38(7):516–523

    PubMed  Google Scholar 

  52. Sun L, Jiang R, Li J et al (2017) MicoRNA-425-5p is a potential prognostic biomarker for cervical cancer. Ann Clin Biochem 54(1):127–133

    Article  CAS  PubMed  Google Scholar 

  53. Li Y, Zheng Q, Bao C et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bonizzato A, Gaffo E, Te Kronnie G et al (2016) CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J 6(10):e483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bahn JH, Zhang Q, Li F et al (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61(1):221–230

    Article  CAS  PubMed  Google Scholar 

  56. Enuka Y, Lauriola M, Feldman ME et al (2016) Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 44(3):1370–1383

    Article  CAS  PubMed  Google Scholar 

  57. Yang F, Liu D-Y, Guo J-T et al (2017) Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol 23(47):8345–8354

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen S, Li T, Zhao Q et al (2017) Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta 466:167–171

    Article  CAS  PubMed  Google Scholar 

  59. Xu L, Zhang M, Zheng X et al (2017) The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol 143(1):17–27

    Article  PubMed  Google Scholar 

  60. Li P, Chen S, Chen H et al (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136

    Article  CAS  PubMed  Google Scholar 

  61. Zhao Z, Li X, Gao C et al (2017) Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 7:39918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Westholm JO, Miura P, Olson S et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao Z, Li X, Jian D et al (2017) Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol 54(3):237–245

    Article  CAS  PubMed  Google Scholar 

  64. Li X, Zhao Z, Jian D et al (2017) Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus. Diab Vasc Dis Res 14(6):510–515

    Article  CAS  PubMed  Google Scholar 

  65. Tang CM, Zhang M, Huang L et al (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 7:40342

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sena CM, Pereira AM, Seica R (2013) Endothelial dysfunction – a major mediator of diabetic vascular disease. Biochim Biophys Acta 1832(12):2216–2231

    Article  CAS  PubMed  Google Scholar 

  67. Zhang SJ, Chen X, Li CP et al (2017) Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy. Invest Ophthalmol Vis Sci 58(14):6500–6509

    Article  PubMed  Google Scholar 

  68. Chen J, Cui L, Yuan J et al (2017) Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochem Biophys Res Commun 494(1-2):126–132

    Article  CAS  PubMed  Google Scholar 

  69. Bhala N, Angulo P, van der Poorten D et al (2011) The natural history of nonalcoholic fatty liver disease with advanced fibrosis or cirrhosis: an international collaborative study. Hepatology 54(4):1208–1216

    Article  PubMed  Google Scholar 

  70. Vanni E, Bugianesi E, Kotronen A et al (2010) From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis 42(5):320–330

    Article  CAS  PubMed  Google Scholar 

  71. Portillo-Sanchez P, Bril F, Maximos M et al (2015) High prevalence of nonalcoholic fatty liver disease in atients with type 2 diabetes Mellitus and normal plasma aminotransferase levels. J Clin Endocrinol Metab 100(6):2231–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Henao-Mejia J, Elinav E, Jin C et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Adams LA, Waters OR, Knuiman MW et al (2009) NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am J Gastroenterol 104(4):861–867

    Article  PubMed  Google Scholar 

  74. Pappachan JM, Babu S, Krishnan B et al (2017) Non-alcoholic fatty liver disease: a clinical update. J Clin Transl Hepatol 5(4):384–393

    PubMed  PubMed Central  Google Scholar 

  75. Carr RM, Oranu A, Khungar V (2016) Nonalcoholic fatty liver disease: pathophysiology and management. Gastroenterol Clin North Am 45(4):639–652

    Article  PubMed  PubMed Central  Google Scholar 

  76. Vernon G, Baranova A, Younossi ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34(3):274–285

    Article  CAS  PubMed  Google Scholar 

  77. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346(16):1221–1231

    Article  CAS  PubMed  Google Scholar 

  78. Farrell GC, Larter CZ (2006) Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43(2 Suppl 1):S99–s112

    Article  CAS  PubMed  Google Scholar 

  79. Birkenfeld AL, Shulman GI (2014) Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59(2):713–723

    Article  PubMed  Google Scholar 

  80. Rinella ME (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA 313(22):2263–2273

    Article  CAS  PubMed  Google Scholar 

  81. Hsu SH, Wang B, Kota J et al (2012) Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 122(8):2871–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Auguet T, Aragones G, Berlanga A et al (2016) miR33a/miR33b* and miR122 as Possible Contributors to Hepatic Lipid Metabolism in Obese Women with Nonalcoholic Fatty Liver Disease. Int J Mol Sci 17(10)

    Article  PubMed Central  Google Scholar 

  83. Yamada H, Suzuki K, Ichino N et al (2013) Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta 424:99–103

    Article  CAS  PubMed  Google Scholar 

  84. Xu Y, Zalzala M, Xu J et al (2015) A metabolic stress-inducible miR-34a-HNF4alpha pathway regulates lipid and lipoprotein metabolism. Nat Commun 6:7466

    Article  CAS  PubMed  Google Scholar 

  85. Miller AM, Gilchrist DS, Nijjar J et al (2013) MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS One 8(8):e72324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gastaldelli A (2017) Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD? Clin Sci (Lond) 131(22):2701–2704

    Article  CAS  Google Scholar 

  87. Musso G, Cassader M, Gambino R (2016) Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov 15(4):249–274

    Article  CAS  PubMed  Google Scholar 

  88. Harrison SA, Rinella ME, Abdelmalek MF et al (2018) NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 391(10126):1174–1185

    Article  CAS  PubMed  Google Scholar 

  89. Armstrong MJ, Gaunt P, Aithal GP et al (2016) Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387(10019):679–690

    Article  CAS  PubMed  Google Scholar 

  90. Guo J, Zhou Y, Cheng Y et al (2018) Metformin-induced changes of the coding transcriptome and non-coding RNAs in the livers of non-alcoholic fatty liver disease mice. Cell Physiol Biochem 45(4):1487–1505

    Article  CAS  PubMed  Google Scholar 

  91. Guo XY, He CX, Wang YQ et al (2017) Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis. Biomed Res Int 2017:5936171

    Google Scholar 

  92. Tanaka N, Aoyama T, Kimura S et al (2017) Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther 179:142–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Samuel VT, Shulman GI (2018) Nonalcoholic fatty liver disease as a Nexus of metabolic and hepatic diseases. Cell Metab 27(1):22–41

    Article  CAS  PubMed  Google Scholar 

  94. Huang K, Du M, Tan X et al (2017) PARP1-mediated PPARalpha poly(ADP-ribosyl)ation suppresses fatty acid oxidation in non-alcoholic fatty liver disease. J Hepatol 66(5):962–977

    Article  CAS  PubMed  Google Scholar 

  95. Guo XY, Sun F, Chen JN et al (2018) circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling. World J Gastroenterol 24(3):323–337

    Article  PubMed  PubMed Central  Google Scholar 

  96. Guo XY, Chen JN, Sun F et al (2017) circRNA_0046367 Prevents hepatoxicity of lipid peroxidation: an inhibitory role against hepatic steatosis. Oxid Med Cell Longev 2017:3960197

    Article  Google Scholar 

  97. Zhao R, Zhou J, Dong X et al (2018) Circular RNA expression alteration in exosomes from the brain extracellular space after traumatic brain injury in mice. J Neurotrauma

    Google Scholar 

  98. Lasda E, Parker R (2016) Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PLoS One 11(2):e0148407

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sridharan K, Gogtay NJ (2016) Therapeutic nucleic acids: current clinical status. Br J Clin Pharmacol 82(3):659–672

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bouchie A (2013) First microRNA mimic enters clinic. Nat Biotechnol 31(7):577

    Article  CAS  PubMed  Google Scholar 

  101. van der Ree MH, de Vree JM, Stelma F et al (2017) Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet 389(10070):709–717

    Article  PubMed  Google Scholar 

  102. Beg MS, Brenner AJ, Sachdev J et al (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 35(2):180–188

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, T., Pan, W., Hu, J., Zhang, Z., Li, G., Liang, Y. (2018). Circular RNAs in Metabolic Diseases. In: Xiao, J. (eds) Circular RNAs. Advances in Experimental Medicine and Biology, vol 1087. Springer, Singapore. https://doi.org/10.1007/978-981-13-1426-1_22

Download citation

Publish with us

Policies and ethics