Skip to main content

Circular RNAs in Organ Fibrosis

  • Chapter
  • First Online:
Circular RNAs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1087))

Abstract

Fibrosis refers to a process involving the accumulation of extracellular matrix components. It could happen in chronic organ injury or during the recovery of acute organ injury. The severity of fibrosis interferes with the function of the organ involved. Numerous studies have been carried out to explore the mechanism of fibrosis, including parenchyma injury, fibrillar ECM accumulation, fibroblast activation, microvasculature rarefaction, and a mononuclear infiltrate. Unfortunately, its underlying mechanism is at largely unknown. The studying of noncoding RNAs has provided novel insight for circRNA-miRNA-mRNA in learning disease progress. Emerging evidence has shown that circRNA is related to fibrosis activity and could potentially be a monitoring factor for fibrosis or, more excitingly, could be a target for treatment. In this chapter, we will first present the basic mechanism of organ fibrosis. Then we will focus on the recent studies about how circRNA dysregulation contributes to organ fibrosis. Finally, the advantages and potential challenges of circRNA-based therapeutics for the treatment of fibroproliferative diseases will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murakami M (1991) Study of the mechanism of supporting cells repairing the organ of Corti in terms of cell kinetics–nuclear DNA synthesis of supporting cell of the organ of Corti in the cochlea damaged by nitromin administration. Nihon Jibiinkoka Gakkai Kaiho 94(3):386–395

    Article  CAS  PubMed  Google Scholar 

  2. Muller I, Vogl T, Pappritz K et al (2017) Pathogenic role of the damage-associated molecular patterns S100A8 and S100A9 in coxsackievirus B3-induced myocarditis. Circ Heart Fail 10(11)

    Google Scholar 

  3. Guerrero-Juarez CF, Plikus MV (2017) Gli-fully halting the progression of fibrosis. Cell Stem Cell 20(6):735–736

    Article  CAS  PubMed  Google Scholar 

  4. Nightingale S, Stormon MO, O’Loughlin EV et al (2017) Early posthepatoportoenterostomy predictors of native liver survival in biliary atresia. J Pediatr Gastroenterol Nutr 64(2):203–209

    Article  PubMed  Google Scholar 

  5. Schwab ME (2002) Increasing plasticity and functional recovery of the lesioned spinal cord. Prog Brain Res 137:351–359

    Article  PubMed  Google Scholar 

  6. Tampe B, Steinle U, Tampe D et al (2017) Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression. Kidney Int 91(1):157–176

    Article  CAS  PubMed  Google Scholar 

  7. Zoubek ME, Trautwein C, Strnad P (2017) Reversal of liver fibrosis: from fiction to reality. Best Pract Res Clin Gastroenterol 31(2):129–141

    Article  PubMed  Google Scholar 

  8. Friedman SL, Sheppard D, Duffield JS et al (2013) Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med 5(167):167sr161

    Article  CAS  Google Scholar 

  9. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117(3):524–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fani F, Regolisti G, Delsante M et al (2017) Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol. https://doi.org/10.1007/s40620-017-0452-4

    Article  PubMed  CAS  Google Scholar 

  11. Fischereder M, Schroppel B (2009) The role of chemokines in acute renal allograft rejection and chronic allograft injury. Front Biosci (Landmark Ed) 14:1807–1814

    Article  CAS  Google Scholar 

  12. Gomez H, Kellum JA, Ronco C (2017) Metabolic reprogramming and tolerance during sepsis-induced AKI. Nat Rev Nephrol 13(3):143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kusano KF, Pola R, Murayama T et al (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11(11):1197–1204

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Shu R, Filippatos G et al (2004) Apoptosis in lung injury and remodeling. J Appl Physiol (1985) 97(4):1535–1542

    Article  CAS  Google Scholar 

  15. Mehrotra P, Collett JA, Gunst SJ et al (2018) Th17 cells contribute to pulmonary fibrosis and inflammation during chronic kidney disease progression after acute ischemia. Am J Physiol Regul Integr Comp Physiol 314(2):R265–R273

    Article  PubMed  CAS  Google Scholar 

  16. Niroomand F, Kubler W (1994) Hibernating, stunning and ischemic preconditioning of the myocardium: therapeutic implications. Clin Investig 72(10):731–736

    Article  CAS  PubMed  Google Scholar 

  17. Popovic B, Sutic I, Skocibusic N et al (2015) Cholestasis and Inflammation of the Pancreas in family medicine. Acta Med Croatica 69(4):319–326

    CAS  PubMed  Google Scholar 

  18. Ranganathan P, Jayakumar C, Ramesh G (2013) Proximal tubule-specific overexpression of netrin-1 suppresses acute kidney injury-induced interstitial fibrosis and glomerulosclerosis through suppression of IL-6/STAT3 signaling. Am J Physiol Renal Physiol 304(8):F1054–F1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tewes S, Gueler F, Chen R et al (2017) Functional MRI for characterization of renal perfusion impairment and edema formation due to acute kidney injury in different mouse strains. PLoS One 12(3):e0173248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Xiao Y, Yang N, Zhang Q et al (2014) Pentraxin 3 inhibits acute renal injury-induced interstitial fibrosis through suppression of IL-6/Stat3 pathway. Inflammation 37(5):1895–1901

    Article  CAS  PubMed  Google Scholar 

  21. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18(7):1028–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Westholm JO, Miura P, Olson S et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang L, Zou M, Fu B et al (2013) Genome-wide identification, characterization, and expression analysis of lineage-specific genes within zebrafish. BMC Genomics 14:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kelly S, Greenman C, Cook PR et al (2015) Exon Skipping Is Correlated with Exon Circularization. J Mol Biol 427(15):2414–2417

    Article  CAS  PubMed  Google Scholar 

  26. Nigro JM, Cho KR, Fearon ER et al (1991) Scrambled exons. Cell 64(3):607–613

    Article  CAS  PubMed  Google Scholar 

  27. Cocquerelle C, Daubersies P, Majerus MA et al (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J 11(3):1095–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030

    Article  CAS  PubMed  Google Scholar 

  29. Cocquerelle C, Mascrez B, Hetuin D et al (1993) Mis-splicing yields circular RNA molecules. FASEB J 7(1):155–160

    Article  CAS  PubMed  Google Scholar 

  30. Pasman Z, Been MD, Garcia-Blanco MA (1996) Exon circularization in mammalian nuclear extracts. RNA 2(6):603–610

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Salzman J, Chen RE, Olsen MN et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Starke S, Jost I, Rossbach O et al (2015) Exon circularization requires canonical splice signals. Cell Rep 10(1):103–111

    Article  CAS  PubMed  Google Scholar 

  34. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  35. Burd CE, Jeck WR, Liu Y et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  37. Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307

    PubMed  PubMed Central  Google Scholar 

  38. Bachmayr-Heyda A, Reiner AT, Auer K et al (2015) Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5:8057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rybak-Wolf A, Stottmeister C, Glazar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885

    Article  CAS  PubMed  Google Scholar 

  40. You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suzuki H, Zuo Y, Wang J et al (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34(8):e63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Veno MT, Hansen TB, Veno ST et al (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16:245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bellemare J, Roberge CJ, Bergeron D et al (2005) Epidermis promotes dermal fibrosis: role in the pathogenesis of hypertrophic scars. J Pathol 206(1):1–8

    Article  PubMed  Google Scholar 

  47. Holvoet T, Devriese S, Castermans K et al (2017) Treatment of intestinal fibrosis in experimental inflammatory bowel disease by the pleiotropic actions of a local rho kinase inhibitor. Gastroenterology 153(4):1054–1067

    Article  CAS  PubMed  Google Scholar 

  48. Alcalde O, Cabrera Gomez S, Valles Gras E et al (2017) Rheumatoid arthritis with severe atrial fibrosis and multiple atrial arrhythmias: chronic atrial myocarditis? Rev Esp Cardiol (Engl Ed). https://doi.org/10.1016/j.rec.2017.04.003

    Article  Google Scholar 

  49. Abdul N, Dixon D, Walker A et al (2015) Fibrosis is a common outcome following total knee arthroplasty. Sci Rep 5:16469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramos F, Robledo C, Izquierdo-Garcia FM et al (2016) Bone marrow fibrosis in myelodysplastic syndromes: a prospective evaluation including mutational analysis. Oncotarget 7(21):30492–30503

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dvorak HF, Harvey VS, McDonagh J (1984) Quantitation of fibrinogen influx and fibrin deposition and turnover in line 1 and line 10 guinea pig carcinomas. Cancer Res 44(8):3348–3354

    CAS  PubMed  Google Scholar 

  52. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659

    Article  CAS  PubMed  Google Scholar 

  53. Iwano M, Plieth D, Danoff TM et al (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110(3):341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jian XC, Liu SF, Shen ZH et al (1988) Histomorphology of oral submucous fibrosis. Report of 24 cases. Chin Med J (Engl) 101(7):505–509

    CAS  Google Scholar 

  55. Zhang SS, Gong ZJ, Xiong W et al (2016) A rat model of oral submucous fibrosis induced by bleomycin. Oral Surg Oral Med Oral Pathol Oral Radiol 122(2):216–223

    Article  PubMed  Google Scholar 

  56. Harwood IR, Greene LM, Kozakowski-Koch JA et al (1992) New peripherally inserted midline catheter: a better alternative for intravenous antibiotic therapy in patients with cystic fibrosis. Pediatr Pulmonol 12(4):233–239

    Article  CAS  PubMed  Google Scholar 

  57. Jiao LR, Seifalian AM, Habib N et al (1999) The effect of mechanically enhancing portal venous inflow on hepatic oxygenation, microcirculation, and function in a rabbit model with extensive hepatic fibrosis. Hepatology 30(1):46–52

    Article  CAS  PubMed  Google Scholar 

  58. Perry KA, Banarjee A, Liu J et al (2013) Gastric ischemic conditioning increases neovascularization and reduces inflammation and fibrosis during gastroesophageal anastomotic healing. Surg Endosc 27(3):753–760

    Article  PubMed  Google Scholar 

  59. Tucker RD, Gibbs GE, Christensen MB (1979) Cystic fibrosis serum effect on the short circuit current of rat jejunum. Pediatr Res 13(12):1371–1374

    Article  CAS  PubMed  Google Scholar 

  60. Poling J, Gajawada P, Lorchner H et al (2012) The Janus face of OSM-mediated cardiomyocyte dedifferentiation during cardiac repair and disease. Cell Cycle 11(3):439–445

    Article  PubMed  CAS  Google Scholar 

  61. Hano H, Takasaki S (2003) Three-dimensional observations on the alterations of lobular architecture in chronic hepatitis with special reference to its angioarchitecture for a better understanding of the formal pathogenesis of liver cirrhosis. Virchows Arch 443(5):655–663

    Article  PubMed  Google Scholar 

  62. Forbes MS, Thornhill BA, Chevalier RL (2011) Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model. Am J Physiol Renal Physiol 301(1):F110–F117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Akram KM, Lomas NJ, Spiteri MA et al (2013) Club cells inhibit alveolar epithelial wound repair via TRAIL-dependent apoptosis. Eur Respir J 41(3):683–694

    Article  CAS  PubMed  Google Scholar 

  64. Aravinthan A, Scarpini C, Tachtatzis P et al (2013) Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J Hepatol 58(3):549–556

    Article  CAS  PubMed  Google Scholar 

  65. Rowe RG, Lin Y, Shimizu-Hirota R et al (2011) Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol Cell Biol 31(12):2392–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roberts AB, Anzano MA, Lamb LC et al (1982) Isolation from murine sarcoma cells of novel transforming growth factors potentiated by EGF. Nature 295(5848):417–419

    Article  CAS  PubMed  Google Scholar 

  67. Border WA, Okuda S, Languino LR et al (1990) Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature 346(6282):371–374

    Article  CAS  PubMed  Google Scholar 

  68. Denis M (1994) Neutralization of transforming growth factor-beta 1 in a mouse model of immune-induced lung fibrosis. Immunology 82(4):584–590

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kuwahara F, Kai H, Tokuda K et al (2002) Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106(1):130–135

    Article  CAS  PubMed  Google Scholar 

  70. Roberts AB, Sporn MB, Assoian RK et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83(12):4167–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crosas-Molist E, Fabregat I (2015) Role of NADPH oxidases in the redox biology of liver fibrosis. Redox Biol 6:106–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kendall RT, Feghali-Bostwick CA (2014) Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 5:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  CAS  PubMed  Google Scholar 

  74. Kalluri R, Zeisberg E (2006) Controlling angiogenesis in heart valves. Nat Med 12(10):1118–1119

    Article  CAS  PubMed  Google Scholar 

  75. Kalluri R, Zeisberg M (2003) Exploring the connection between chronic renal fibrosis and bone morphogenic protein-7. Histol Histopathol 18(1):217–224

    CAS  PubMed  Google Scholar 

  76. Moore-Morris T, Cattaneo P, Puceat M et al (2016) Origins of cardiac fibroblasts. J Mol Cell Cardiol 91:1–5

    Article  CAS  PubMed  Google Scholar 

  77. Zeisberg EM, Kalluri R (2010) Origins of cardiac fibroblasts. Circ Res 107(11):1304–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dufourcq P, Louis H, Dandre F et al (1997) Phenotypic modification of arterial smooth muscle cells in response to medial dissection. Coron Artery Dis 8(3–4):163–170

    Article  CAS  PubMed  Google Scholar 

  79. Shujia J, Haider HK, Idris NM et al (2008) Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res 77(3):525–533

    Article  CAS  PubMed  Google Scholar 

  80. Tanaka Y, Nouchi T, Yamane M et al (1991) Phenotypic modulation in lipocytes in experimental liver fibrosis. J Pathol 164(3):273–278

    Article  CAS  PubMed  Google Scholar 

  81. Grupp C, Lottermoser J, Cohen DI et al (1997) Transformation of rat inner medullary fibroblasts to myofibroblasts in vitro. Kidney Int 52(5):1279–1290

    Article  CAS  PubMed  Google Scholar 

  82. Maxwell PH, Osmond MK, Pugh CW et al (1993) Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44(5):1149–1162

    Article  CAS  PubMed  Google Scholar 

  83. Paliege A, Rosenberger C, Bondke A et al (2010) Hypoxia-inducible factor-2alpha-expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-inducible factor stabilization. Kidney Int 77(4):312–318

    Article  CAS  PubMed  Google Scholar 

  84. Camelliti P, Devlin GP, Matthews KG et al (2004) Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction. Cardiovasc Res 62(2):415–425

    Article  CAS  PubMed  Google Scholar 

  85. Camelliti P, Green CR, Kohl P (2006) Structural and functional coupling of cardiac myocytes and fibroblasts. Adv Cardiol 42:132–149

    Article  CAS  PubMed  Google Scholar 

  86. Camelliti P, Green CR, LeGrice I et al (2004) Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res 94(6):828–835

    Article  CAS  PubMed  Google Scholar 

  87. Tveito A, Lines G, Artebrant R et al (2011) Existence of excitation waves for a collection of cardiomyocytes electrically coupled to fibroblasts. Math Biosci 230(2):79–86

    Article  PubMed  Google Scholar 

  88. Chang HY, Chi JT, Dudoit S et al (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99(20):12877–12882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sugimoto H, Mundel TM, Kieran MW et al (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5(12):1640–1646

    Article  CAS  PubMed  Google Scholar 

  90. Iwano M, Fischer A, Okada H et al (2001) Conditional abatement of tissue fibrosis using nucleoside analogs to selectively corrupt DNA replication in transgenic fibroblasts. Mol Ther 3(2):149–159

    Article  CAS  PubMed  Google Scholar 

  91. Bayreuther K, Francz PI, Rodemann HP (1992) Fibroblasts in normal and pathological terminal differentiation, aging, apoptosis and transformation. Arch Gerontol Geriatr 15(Suppl 1):47–74

    Article  PubMed  Google Scholar 

  92. Bayreuther K, Francz PI, Rodemann HP (1995) Fibroblasts in normal and pathological terminal differentiation, aging, apoptosis and transformation. Ontogenez 26(1):22–37

    CAS  PubMed  Google Scholar 

  93. Bayreuther K, Rodemann HP, Francz PI et al (1988) Differentiation of fibroblast stem cells. J Cell Sci Suppl 10:115–130

    Article  CAS  PubMed  Google Scholar 

  94. Bayreuther K, Rodemann HP, Hommel R et al (1988) Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci USA 85(14):5112–5116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bucala R, Spiegel LA, Chesney J et al (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1(1):71–81

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lin SL, Kisseleva T, Brenner DA et al (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173(6):1617–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ronnov-Jessen L, Petersen OW (1996) A function for filamentous alpha-smooth muscle actin: retardation of motility in fibroblasts. J Cell Biol 134(1):67–80

    Article  CAS  PubMed  Google Scholar 

  98. Ronnov-Jessen L, Petersen OW, Koteliansky VE et al (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95(2):859–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ronnov-Jessen L, Petersen OW (1993) Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 68(6):696–707

    CAS  PubMed  Google Scholar 

  100. Boutet A, De Frutos CA, Maxwell PH et al (2006) Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J 25(23):5603–5613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Broekema M, Harmsen MC, van Luyn MJ et al (2007) Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J Am Soc Nephrol 18(1):165–175

    Article  CAS  PubMed  Google Scholar 

  102. Humphreys BD, Lin SL, Kobayashi A et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176(1):85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kim KK, Wei Y, Szekeres C et al (2009) Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest 119(1):213–224

    CAS  PubMed  Google Scholar 

  104. Kisseleva T, Uchinami H, Feirt N et al (2006) Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 45(3):429–438

    Article  CAS  PubMed  Google Scholar 

  105. Li J, Qu X, Yao J et al (2010) Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59(10):2612–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Osterreicher CH, Penz-Osterreicher M, Grivennikov SI et al (2011) Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci USA 108(1):308–313

    Article  CAS  PubMed  Google Scholar 

  107. Quaggin SE, Kapus A (2011) Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int 80(1):41–50

    Article  PubMed  Google Scholar 

  108. Rock JR, Barkauskas CE, Cronce MJ et al (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci USA 108(52):E1475–E1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zeisberg EM, Potenta SE, Sugimoto H et al (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19(12):2282–2287

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zeisberg M, Yang C, Martino M et al (2007) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282(32):23337–23347

    Article  CAS  PubMed  Google Scholar 

  111. Zhou B, von Gise A, Ma Q et al (2010) Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev Biol 338(2):251–261

    Article  CAS  PubMed  Google Scholar 

  112. Distler O, Distler JH, Scheid A et al (2004) Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res 95(1):109–116

    Article  CAS  PubMed  Google Scholar 

  113. Higgins DF, Kimura K, Bernhardt WM et al (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117(12):3810–3820

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Moon JO, Welch TP, Gonzalez FJ et al (2009) Reduced liver fibrosis in hypoxia-inducible factor-1alpha-deficient mice. Am J Physiol Gastrointest Liver Physiol 296(3):G582–G592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Corpechot C, Barbu V, Wendum D et al (2002) Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 35(5):1010–1021

    Article  CAS  PubMed  Google Scholar 

  116. Ioannou M, Pyrpasopoulou A, Simos G et al (2013) Upregulation of VEGF expression is associated with accumulation of HIF-1alpha in the skin of naive scleroderma patients. Mod Rheumatol 23(6):1245–1248

    Article  CAS  PubMed  Google Scholar 

  117. Maeshima Y, Makino H (2010) Angiogenesis and chronic kidney disease. Fibrogenesis Tissue Repair 3:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Yoon YS, Uchida S, Masuo O et al (2005) Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation 111(16):2073–2085

    Article  CAS  PubMed  Google Scholar 

  119. Worda M, Sgonc R, Dietrich H et al (2003) In vivo analysis of the apoptosis-inducing effect of anti-endothelial cell antibodies in systemic sclerosis by the chorionallantoic membrane assay. Arthritis Rheum 48(9):2605–2614

    Article  CAS  PubMed  Google Scholar 

  120. Rieder F, Kessler SP, West GA et al (2011) Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol 179(5):2660–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zeisberg EM, Potenta S, Xie L et al (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67(21):10123–10128

    Article  CAS  PubMed  Google Scholar 

  122. Zeisberg EM, Tarnavski O, Zeisberg M et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961

    Article  CAS  PubMed  Google Scholar 

  123. Eisenberg LM, Markwald RR (1995) Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77(1):1–6

    Article  CAS  PubMed  Google Scholar 

  124. Liebner S, Cattelino A, Gallini R et al (2004) Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166(3):359–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nakajima Y, Yamagishi T, Hokari S et al (2000) Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec 258(2):119–127

    Article  CAS  PubMed  Google Scholar 

  126. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208(7):1339–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wynn TA, Barron L, Thompson RW et al (2011) Quantitative assessment of macrophage functions in repair and fibrosis. Curr Protoc Immunol Chapter 14:Unit14.22

    Google Scholar 

  129. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115(2):209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bataller R, Sancho-Bru P, Gines P et al (2005) Liver fibrogenesis: a new role for the renin-angiotensin system. Antioxid Redox Signal 7(9-10):1346–1355

    Article  CAS  PubMed  Google Scholar 

  131. Seki E, Schwabe RF (2015) Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 61(3):1066–1079

    Article  PubMed  Google Scholar 

  132. Chen Y, Yuan B, Wu Z et al (2017) Microarray profiling of circular RNAs and the potential regulatory role of hsa_circ_0071410 in the activated human hepatic stellate cell induced by irradiation. Gene 629:35–42

    Article  CAS  PubMed  Google Scholar 

  133. Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71(4):549–574

    Article  CAS  PubMed  Google Scholar 

  134. Goyal BR, Mehta AA (2013) Diabetic cardiomyopathy: pathophysiological mechanisms and cardiac dysfuntion. Hum Exp Toxicol 32(6):571–590

    Article  CAS  PubMed  Google Scholar 

  135. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98(5):596–605

    Article  CAS  PubMed  Google Scholar 

  136. Suys BE, Katier N, Rooman RP et al (2004) Female children and adolescents with type 1 diabetes have more pronounced early echocardiographic signs of diabetic cardiomyopathy. Diabetes Care 27(8):1947–1953

    Article  PubMed  Google Scholar 

  137. Aneja A, Tang WH, Bansilal S et al (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121(9):748–757

    Article  PubMed  Google Scholar 

  138. Tarquini R, Lazzeri C, Pala L et al (2011) The diabetic cardiomyopathy. Acta Diabetol 48(3):173–181

    Article  PubMed  Google Scholar 

  139. Dzeshka MS, Lip GY, Snezhitskiy V et al (2015) Cardiac fibrosis in patients With atrial fibrillation: mechanisms and clinical implications. J Am Coll Cardiol 66(8):943–959

    Article  PubMed  Google Scholar 

  140. Tveito A, Lines GT, Edwards AG et al (2012) Slow Calcium-Depolarization-Calcium waves may initiate fast local depolarization waves in ventricular tissue. Prog Biophys Mol Biol 110(2–3):295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tang CM, Zhang M, Huang L et al (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 7:40342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Zhou B, Yu JW (2017) A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta1. Biochem Biophys Res Commun 487(4):769–775

    Article  CAS  PubMed  Google Scholar 

  143. Barkauskas CE, Noble PW (2014) Cellular mechanisms of tissue fibrosis. 7. New insights into the cellular mechanisms of pulmonary fibrosis. Am J Physiol Cell Physiol 306(11):C987–C996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Noble PW, Barkauskas CE, Jiang D (2012) Pulmonary fibrosis: patterns and perpetrators. J Clin Invest 122(8):2756–2762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Churg A, Wright JL, Tazelaar HD (2011) Acute exacerbations of fibrotic interstitial lung disease. Histopathology 58(4):525–530

    Article  PubMed  Google Scholar 

  146. Tazelaar HD, Wright JL, Churg A (2011) Desquamative interstitial pneumonia. Histopathology 58(4):509–516

    Article  PubMed  Google Scholar 

  147. Wright JL, Tazelaar HD, Churg A (2011) Fibrosis with emphysema. Histopathology 58(4):517–524

    Article  PubMed  Google Scholar 

  148. Mathai SK, Gulati M, Peng X et al (2010) Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab Invest 90(6):812–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Carneiro PJ, Clevelario AL, Padilha GA et al (2017) Bosutinib therapy ameliorates lung inflammation and fibrosis in experimental silicosis. Front Physiol 8:159

    Article  PubMed  PubMed Central  Google Scholar 

  150. Miao R, Ding B, Zhang Y et al (2016) Proteomic profiling differences in serum from silicosis and chronic bronchitis patients: a comparative analysis. J Thorac Dis 8(3):439–450

    Article  PubMed  PubMed Central  Google Scholar 

  151. Rosengarten D, Fox BD, Fireman E et al (2017) Survival following lung transplantation for artificial stone silicosis relative to idiopathic pulmonary fibrosis. Am J Ind Med 60(3):248–254

    Article  PubMed  Google Scholar 

  152. Zhao MM, Cui JZ, Cui Y et al (2013) Therapeutic effect of exogenous bone marrowderived mesenchymal stem cell transplantation on silicosis via paracrine mechanisms in rats. Mol Med Rep 8(3):741–746

    Article  CAS  PubMed  Google Scholar 

  153. Gungen AC, Aydemir Y, Coban H et al (2016) Lung cancer in patients diagnosed with silicosis should be investigated. Respir Med Case Rep 18:93–95

    PubMed  PubMed Central  Google Scholar 

  154. Yang X, Wang J, Zhou Z et al (2018) Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation. FASEB J. https://doi.org/10.1096/fj.201701118R:fj201701118R

  155. Kawaratani H, Moriya K, Namisaki T et al (2017) Therapeutic strategies for alcoholic liver disease: focusing on inflammation and fibrosis (Review). Int J Mol Med 40(2):263–270

    Article  PubMed  Google Scholar 

  156. Nogueira A, Pires MJ, Oliveira PA (2017) Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. In Vivo 31(1):1–22

    Article  PubMed  PubMed Central  Google Scholar 

  157. Owens GM (2017) Strategies to manage costs in idiopathic pulmonary fibrosis. Am J Manag Care 23(11 Suppl):S191–S196

    PubMed  Google Scholar 

  158. Stasi C, Milani S (2017) Evolving strategies for liver fibrosis staging: non-invasive assessment. World J Gastroenterol 23(2):191–196

    Article  PubMed  PubMed Central  Google Scholar 

  159. Friedman SL (2004) Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 1(2):98–105

    Article  PubMed  Google Scholar 

  160. Bayomi HS, Elsherbiny NM, El-Gayar AM et al (2013) Evaluation of renal protective effects of inhibiting TGF-beta type I receptor in a cisplatin-induced nephrotoxicity model. Eur Cytokine Netw 24(4):139–147

    PubMed  Google Scholar 

  161. Xu Y, Lou Z, Lee SH (2017) Arctigenin represses TGF-beta-induced epithelial mesenchymal transition in human lung cancer cells. Biochem Biophys Res Commun 493(2):934–939

    Article  CAS  PubMed  Google Scholar 

  162. Munjal C, Opoka AM, Osinska H et al (2014) TGF-beta mediates early angiogenesis and latent fibrosis in an Emilin1-deficient mouse model of aortic valve disease. Dis Model Mech 7(8):987–996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Katz LH, Likhter M, Jogunoori W et al (2016) TGF-beta signaling in liver and gastrointestinal cancers. Cancer Lett 379(2):166–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rao S, Zaidi S, Banerjee J et al (2017) Transforming growth factor-beta in liver cancer stem cells and regeneration. Hepatol Commun 1(6):477–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kiryu H, Terai G, Imamura O et al (2011) A detailed investigation of accessibilities around target sites of siRNAs and miRNAs. Bioinformatics 27(13):1788–1797

    Article  CAS  PubMed  Google Scholar 

  166. Samuel P, Pink RC, Brooks SA et al (2016) miRNAs and ovarian cancer: a miRiad of mechanisms to induce cisplatin drug resistance. Expert Rev Anticancer Ther 16(1):57–70

    Article  CAS  PubMed  Google Scholar 

  167. Scimeca JC, Verron E (2017) The multiple therapeutic applications of miRNAs for bone regenerative medicine. Drug Discov Today 22(7):1084–1091

    Article  CAS  PubMed  Google Scholar 

  168. Chen Y, Li C, Tan C et al (2017) Circular RNA in human disease and their potential clinic significance. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 34(1):133–137

    PubMed  Google Scholar 

  169. Park WS, Miyano-Kurosaki N, Abe T et al (1999) Properties of circular dumbbell RNA/DNA chimeric oligonucleotides containing antisense phosphodiester oligonucleotides. Nucleic Acids Symp Ser doi 42:225–226

    Article  CAS  Google Scholar 

  170. Yamakawa H, Abe T, Saito T et al (1998) Properties of nicked and circular dumbbell RNA/DNA chimeric oligonucleotides containing antisense phosphodiester oligodeoxynucleotides. Bioorg Med Chem 6(7):1025–1032

    Article  CAS  PubMed  Google Scholar 

  171. Zuo H, Suzuki S, Sotoda M et al (2006) New technique for visualizing cerebral vessels in MR angiographic images using three-dimensional discrete wavelet transform. Igaku Butsuri 26(2):65–74

    PubMed  Google Scholar 

  172. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17(4):205–211

    Article  CAS  PubMed  Google Scholar 

  173. Greene J, Baird AM, Brady L et al (2017) Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci 4:38

    Article  PubMed  PubMed Central  Google Scholar 

  174. Qin M, Liu G, Huo X et al (2016) Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark 16(1):161–169

    Article  CAS  PubMed  Google Scholar 

  175. Bao C, Lyu D, Huang S (2016) Circular RNA expands its territory. Mol Cell Oncol 3(2):e1084443

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from National Natural Science Foundation of China (81370280 and 81570332 to LZ, 81470515 and 81670362 to JH Xu), Shanghai Medical Guide Project from Shanghai Science and Technology Committee (134119a3000 to Jiahong Xu), and the grant from Jiangsu Province’s Key Provincial Talents Program (ZDRCA2016019 to LZ).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, J., Dai, Q., Liu, Z., Zhou, L., Xu, J. (2018). Circular RNAs in Organ Fibrosis. In: Xiao, J. (eds) Circular RNAs. Advances in Experimental Medicine and Biology, vol 1087. Springer, Singapore. https://doi.org/10.1007/978-981-13-1426-1_21

Download citation

Publish with us

Policies and ethics