Advertisement

Circular RNAs pp 245-257 | Cite as

Circular RNA in Liver: Health and Diseases

  • Meiyi Song
  • Lu Xia
  • Mengxue Sun
  • Changqing Yang
  • Fei WangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)

Abstract

Circular RNA (circRNA) is an important class of noncoding RNA characterized by covalently closed continuous loop structures. In recent years, the various functions of circRNAs have been continuously documented, including effects on cell proliferation and apoptosis and nutrient metabolism. The liver is the largest solid organ in mammals, and it also performs many functions in the body, which is considered to be the busiest organ in the body. At the same time, the liver is vulnerable to multiple pathogenic factors, causing various acute and chronic liver diseases. The pathogenesis of liver disease is still not fully understood. As a rising star for the past few years, circRNAs have been proven involved in the regulation of liver homeostasis and disease. This chapter will explain the role of circRNAs in liver health and diseases and sort out the confusion in the present study.

Keywords

Circular RNA Liver MicroRNA Noncoding RNA 

Notes

Acknowledgments

This work was supported by the grants from National Natural Science Foundation of China (81670571 and 81370559 C. Yang; 81400635 to F. Wang), Joint Projects in Major Diseases funding from Shanghai Municipal Commission of Health and Family Planning (2014ZYJB0201 to C. Yang), Joint Projects for Novel Frontier Technology in Shanghai Municipal Hospital from Shanghai Municipal Commission of Health and Family Planning (SHDC12014122 to C. Yang), Shanghai Medical Guide Project from Shanghai Science and Technology Committee (14411971500 to F. Wang), grants from Chinese Foundation for Hepatitis Prevention and Control (TQGB20140141 to F. Wang), and funds from Shanghai Innovation Program (12431901002 to C. Yang).

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. 1.
    Errichelli L, Dini Modigliani S, Laneve P et al (2017) FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun 8:14741PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Tan WL, Lim BT, Anene-Nzelu CG et al (2017) A landscape of circular RNA expression in the human heart. Cardiovasc Res 113(3):298–309PubMedGoogle Scholar
  3. 3.
    Pan T, Sun X, Liu Y et al (2018) Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis. Plant Mol Biol 96(3):217–229PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Cortes-Lopez M, Gruner MR, Cooper DA et al (2018) Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics 19(1):8PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kramer MC, Liang D, Tatomer DC et al (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev 29(20):2168–2182PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zhang XO, Wang HB, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ivanov A, Memczak S, Wyler E et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Andres-Leon E, Nunez-Torres R, Rojas AM (2016) miARma-Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis. Sci Rep 6:25749PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Starke S, Jost I, Rossbach O et al (2015) Exon circularization requires canonical splice signals. Cell Rep 10(1):103–111PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Vicens Q, Westhof E (2014) Biogenesis of circular RNAs. Cell 159(1):13–14PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Legnini I, Di Timoteo G, Rossi F et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in Myogenesis. Mol Cell 66(1):22–37 e29PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Pamudurti NR, Bartok O, Jens M et al (2017) Translation of CircRNAs. Mol Cell 66(1):9–21 e27PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Peng L, Yuan XQ, Li GC (2015) The emerging landscape of circular RNA ciRS-7 in cancer (review). Oncol Rep 33(6):2669–2674PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Han B, Chao J, Yao H (2018) Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther 187:31.  https://doi.org/10.1016/j.pharmthera.2018.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Xue J, Liu Y, Luo F et al (2017) Circ100284, via miR-217 regulation of EZH2, is involved in the arsenite-accelerated cell cycle of human keratinocytes in carcinogenesis. Biochim Biophys Acta 1863(3):753–763CrossRefGoogle Scholar
  21. 21.
    Zhang R, Xu J, Zhao J et al (2018) Silencing of hsa_circ_0007534 suppresses proliferation and induces apoptosis in colorectal cancer cells. Eur Rev Med Pharmacol Sci 22(1):118–126PubMedPubMedCentralGoogle Scholar
  22. 22.
    Cheng X, Zhang L, Zhang K et al (2018) Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein. Ann Rheum Dis 77:770.  https://doi.org/10.1136/annrheumdis-2017-212056 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Holdt LM, Stahringer A, Sass K et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Place RF, Noonan EJ (2014) Non-coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones 19(2):159–172PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Huang JL, Qin MC, Zhou Y et al (2018) Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model. Aging (Albany NY) 10(2):253–265Google Scholar
  26. 26.
    Qu S, Zhong Y, Shang R et al (2017) The emerging landscape of circular RNA in life processes. RNA Biol 14(8):992–999PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yang X, Wang J, Zhou Z et al (2018) Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation. FASEB J 32:3264.  https://doi.org/10.1096/fj.201701118R:fj201701118R CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Abd Majid FA, Ab Rahman NS, Abd Wahid E et al (2018) Evaluation of herb-drug interaction of SynacinnTM and individual biomarker through cytochrome 450 inhibition assay. Drug Metab Lett 12.  https://doi.org/10.2174/1872312812666180314112457 PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ahmad T, Valentovic MA, Rankin GO (2018) Effects of cytochrome P450 single nucleotide polymorphisms on methadone metabolism and pharmacodynamics. Biochem Pharmacol 153:196.  https://doi.org/10.1016/j.bcp.2018.02.020 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ahn SB, Jun DW, Jang K et al (2018) Duodenal Niemann-Pick C1-like 1 expression was negatively correlated with liver X receptor expression in nonalcoholic fatty liver disease. Korean J Intern Med.  https://doi.org/10.3904/kjim.2017.100
  31. 31.
    Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Cocquerelle C, Daubersies P, Majerus MA et al (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J 11(3):1095–1098PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Chiu YJ, Chou SC, Chiu CS et al (2018) Hepatoprotective effect of the ethanol extract of Polygonum orientale on carbon tetrachloride-induced acute liver injury in mice. J Food Drug Anal 26(1):369–379PubMedCrossRefGoogle Scholar
  34. 34.
    George N, Chen M, Yuen N et al (2018) Interplay of gender, age and drug properties on reporting frequency of drug-induced liver injury. Regul Toxicol Pharmacol 94:101–107PubMedCrossRefGoogle Scholar
  35. 35.
    Su Q, Kumar V, Sud N et al (2018) MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis. Adv Drug Deliv Rev 129:54.  https://doi.org/10.1016/j.addr.2018.01.009 CrossRefPubMedGoogle Scholar
  36. 36.
    Rahmoune H, Boutrid N, Bioud B (2018) Nonalcoholic steatohepatitis. N Engl J Med 378(8):780–781PubMedGoogle Scholar
  37. 37.
    Aspichueta P (2018) Lipid-rich environment: a key role promoting carcinogenesis in obesity-related non-alcoholic fatty liver disease. Gut:gutjnl-2018-316047.  https://doi.org/10.1136/gutjnl-2018-316047 PubMedCrossRefGoogle Scholar
  38. 38.
    Fukushima H, Yamashina S, Arakawa A et al (2018) The formation of p62-positive inclusion body is associated with macrophage polarization in non-alcoholic fatty liver disease. Hepatol Res.  https://doi.org/10.1111/hepr.13070 PubMedCrossRefGoogle Scholar
  39. 39.
    Wesolowski SR, Kasmi KC, Jonscher KR et al (2017) Developmental origins of NAFLD: a womb with a clue. Nat Rev Gastroenterol Hepatol 14(2):81–96PubMedCrossRefGoogle Scholar
  40. 40.
    Del Campo JA, Gallego-Duran R, Gallego P et al (2018) Genetic and epigenetic regulation in nonalcoholic fatty liver disease (NAFLD). Int J Mol Sci 19(3)Google Scholar
  41. 41.
    Krenkel O, Puengel T, Govaere O et al (2017) Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 67:1270.  https://doi.org/10.1002/hep.29544 CrossRefGoogle Scholar
  42. 42.
    Tarantino G, Caputi A (2011) JNKs, insulin resistance and inflammation: a possible link between NAFLD and coronary artery disease. World J Gastroenterol 17(33):3785–3794PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Tilg H, Moschen AR (2011) IL-1 cytokine family members and NAFLD: neglected in metabolic liver inflammation. J Hepatol 55(5):960–962PubMedCrossRefGoogle Scholar
  44. 44.
    Vespasiani-Gentilucci U, Carotti S, Perrone G et al (2015) Hepatic toll-like receptor 4 expression is associated with portal inflammation and fibrosis in patients with NAFLD. Liver Int 35(2):569–581PubMedCrossRefGoogle Scholar
  45. 45.
    Neuschwander-Tetri BA (2014) NASH: the tribulations of conducting NASH trials. Nat Rev Gastroenterol Hepatol 11(5):274–276PubMedCrossRefGoogle Scholar
  46. 46.
    Diehl AM, Day C (2017) Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med 377(21):2063–2072PubMedCrossRefGoogle Scholar
  47. 47.
    Caussy C, Hsu C, Lo MT et al (2018) Novel link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD. Hepatology.  https://doi.org/10.1002/hep.29892 CrossRefGoogle Scholar
  48. 48.
    Arab JP, Martin-Mateos RM, Shah VH (2018) Gut-liver axis, cirrhosis and portal hypertension: the chicken and the egg. Hepatol Int 12(Suppl 1):24–33PubMedCrossRefGoogle Scholar
  49. 49.
    Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65(8):1038–1048PubMedCrossRefGoogle Scholar
  50. 50.
    Younossi ZM, Loomba R, Anstee QM et al (2017) Diagnostic modalities for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH) and associated fibrosis. Hepatology.  https://doi.org/10.1002/hep.29721 PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Younossi ZM, Loomba R, Rinella ME et al (2017) Current and future therapeutic regimens for non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Hepatology.  https://doi.org/10.1002/hep.29724 PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Beier JI, Banales JM (2018) Pyroptosis: an inflammatory link between NAFLD and NASH with potential therapeutic implications. J Hepatol 68:643.  https://doi.org/10.1016/j.jhep.2018.01.017 CrossRefGoogle Scholar
  53. 53.
    Ruiz-Ramirez A, Chavez-Salgado M, Peneda-Flores JA et al (2011) High-sucrose diet increases ROS generation, FFA accumulation, UCP2 level, and proton leak in liver mitochondria. Am J Physiol Endocrinol Metab 301(6):E1198–E1207PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kawano Y, Cohen DE (2013) Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol 48(4):434–441PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bril F, Barb D, Portillo-Sanchez P et al (2017) Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology 65(4):1132–1144PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Alves-Bezerra M, Cohen DE (2017) Triglyceride metabolism in the liver. Compr Physiol 8(1):1–8PubMedGoogle Scholar
  57. 57.
    Ezquerro S, Mendez-Gimenez L, Becerril S et al (2016) Acylated and desacyl ghrelin are associated with hepatic lipogenesis, beta-oxidation and autophagy: role in NAFLD amelioration after sleeve gastrectomy in obese rats. Sci Rep 6:39942PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zhang Y, Cheng X, Lu Z et al (2013) Upregulation of miR-15b in NAFLD models and in the serum of patients with fatty liver disease. Diabetes Res Clin Pract 99(3):327–334PubMedCrossRefGoogle Scholar
  59. 59.
    An X, Yang Z, An Z (2017) MiR-149 compromises the reactions of liver cells to fatty acid via its polymorphism and increases non-alcoholic fatty liver disease (NAFLD) risk by targeting methylene tetrahydrofolate reductase (MTHFR). Med Sci Monit 23:2299–2307PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ghareghani P, Shanaki M, Ahmadi S et al (2018) Aerobic endurance training improves nonalcoholic fatty liver disease (NAFLD) features via miR-33 dependent autophagy induction in high fat diet fed mice. Obes Res Clin Pract 12(1S1):80–89PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Drygalski K, Berk K, Charytoniuk T et al (2017) Does the enterolactone (ENL) affect fatty acid transporters and lipid metabolism in liver? Nutr Metab (Lond) 14:69CrossRefGoogle Scholar
  62. 62.
    Cheng J, Liu C, Hu K et al (2017) Ablation of systemic SIRT1 activity promotes nonalcoholic fatty liver disease by affecting liver-mesenteric adipose tissue fatty acid mobilization. Biochim Biophys Acta 1863(11):2783–2790CrossRefGoogle Scholar
  63. 63.
    Salgado AL, Carvalho L, Oliveira AC et al (2010) Insulin resistance index (HOMA-IR) in the differentiation of patients with non-alcoholic fatty liver disease and healthy individuals. Arq Gastroenterol 47(2):165–169PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Klisic A, Isakovic A, Kocic G et al (2017) Relationship between oxidative stress, inflammation and dyslipidemia with fatty liver index in patients with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 126:371.  https://doi.org/10.1055/s-0043-118667 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Firidin G (2018) Oxidative stress parameters, induction of lipid peroxidation, and ATPase activity in the liver and kidney of Oreochromis niloticus exposed to lead and mixtures of lead and zinc. Bull Environ Contam Toxicol 100(4):477–484PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Francque S, De Maeght S, Adler M et al (2011) High prevalence of advanced fibrosis in association with the metabolic syndrome in a Belgian prospective cohort of NAFLD patients with elevated ALT. Results of the Belgian NAFLD registry. Acta Gastroenterol Belg 74(1):9–16PubMedPubMedCentralGoogle Scholar
  67. 67.
    Tan TC, Crawford DH, Jaskowski LA et al (2011) Altered lipid metabolism in Hfe-knockout mice promotes severe NAFLD and early fibrosis. Am J Physiol Gastrointest Liver Physiol 301(5):G865–G876PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Al-Serri A, Anstee QM, Valenti L et al (2012) The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies. J Hepatol 56(2):448–454PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Guo XY, Chen JN (2017) circRNA_0046367 prevents hepatoxicity of lipid peroxidation: an inhibitory role against hepatic steatosis. Oxid Med Cell Longev 2017:3960197PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Guo J, Zhou Y, Cheng Y et al (2018) Metformin-induced changes of the coding transcriptome and non-coding RNAs in the livers of non-alcoholic fatty liver disease mice. Cell Physiol Biochem 45(4):1487–1505PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Guo XY, Sun F, Chen JN et al (2018) circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling. World J Gastroenterol 24(3):323–337PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Xu H, Guo S, Li W et al (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Argemi J, Kress TR, Chang HCY et al (2017) X-box binding protein 1 regulates unfolded protein, acute-phase, and DNA damage responses during regeneration of mouse liver. Gastroenterology 152(5):1203–1216 e1215PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Schmidt-Arras D, Rose-John S (2016) IL-6 pathway in the liver: from physiopathology to therapy. J Hepatol 64(6):1403–1415PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Paschos KA, Bird NC (2010) Liver regeneration and its impact on post-hepatectomy metastatic tumour recurrence. Anticancer Res 30(6):2161–2170PubMedPubMedCentralGoogle Scholar
  76. 76.
    Tao Y, Wang M, Chen E et al (2017) Liver regeneration: analysis of the main relevant signaling molecules. Mediat Inflamm 2017:4256352Google Scholar
  77. 77.
    Li L, Guo J, Chen Y et al (2017) Comprehensive CircRNA expression profile and selection of key CircRNAs during priming phase of rat liver regeneration. BMC Genomics 18(1):80PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    DeLeve LD (2015) Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 61(5):1740–1746PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Pradere JP, Kluwe J, De Minicis S et al (2013) Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 58(4):1461–1473PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Cai C, Zhu X, Li P et al (2017) NLRP3 deletion inhibits the non-alcoholic steatohepatitis development and inflammation in Kupffer cells induced by palmitic acid. Inflammation 40(6):1875–1883PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Li Z, Ji L, Su S et al (2018) Leptin up-regulates microRNA-27a/b-3p level in hepatic stellate cells. Exp Cell Res 366:63.  https://doi.org/10.1016/j.yexcr.2018.03.015 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Qu C, Zheng D, Li S et al (2018) Tyrosine kinase SYK is a potential therapeutic target for liver fibrosis. Hepatology.  https://doi.org/10.1002/hep.29881 CrossRefGoogle Scholar
  83. 83.
    Bu FT, Chen Y, Yu HX et al (2018) SENP2 alleviates CCl4-induced liver fibrosis by promoting activated hepatic stellate cell apoptosis and reversion. Toxicol Lett 289:86–98PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Coppola N, Perna A, Lucariello A et al (2018) Effects of treatment with Maraviroc a CCR5 inhibitor on a human hepatic stellate cell line. J Cell Physiol 233:6224.  https://doi.org/10.1002/jcp.26485 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kiagiadaki F, Kampa M, Voumvouraki A et al (2018) Activin-a causes hepatic stellate cell activation via the induction of TNFalpha and TGFbeta in Kupffer cells. Biochim Biophys Acta 1864(3):891–899CrossRefGoogle Scholar
  86. 86.
    Lan T, Li C, Yang G et al (2018) Sphingosine kinase 1 promotes liver fibrosis by preventing miR-19b-3p-mediated inhibition of CCR2. Hepatology.  https://doi.org/10.1002/hep.29885 PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Zhang K, Han X, Zhang Z et al (2017) The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFbeta and Notch pathways. Nat Commun 8(1):144PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chen Y, Yuan B, Wu Z et al (2017) Microarray profiling of circular RNAs and the potential regulatory role of hsa_circ_0071410 in the activated human hepatic stellate cell induced by irradiation. Gene 629:35–42CrossRefGoogle Scholar
  89. 89.
    Tang CM, Zhang M, Huang L et al (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 7:40342PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Zhou B, Yu JW (2017) A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta1. Biochem Biophys Res Commun 487(4):769–775PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. Lancet (18):30010–30012.  https://doi.org/10.1016/S0140-6736
  92. 92.
    Abitbol S, Dahmani R, Coulouarn C et al (2018) AXIN deficiency in human and mouse hepatocytes induces hepatocellular carcinoma in the absence of beta-catenin activation. J Hepatol 68:1203.  https://doi.org/10.1016/j.jhep.2017.12.018 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Cai Z, Qian ZY, Jiang H et al (2018) hPCL3s promotes hepatocellular carcinoma metastasis by activating beta-catenin signaling. Cancer Res 78:2536.  https://doi.org/10.1158/0008-5472.CAN-17-0028 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Buschauer S, Koch A, Wiggermann P et al (2018) Hepatocellular carcinoma cells surviving doxorubicin treatment exhibit increased migratory potential and resistance to doxorubicin re-treatment in vitro. Oncol Lett 15(4):4635–4640PubMedPubMedCentralGoogle Scholar
  95. 95.
    Yang F, Liu DY, Guo JT et al (2017) Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol 23(47):8345–8354PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Zhang Y, Liu H, Li W et al (2017) CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging (Albany NY) 9(6):1585–1594Google Scholar
  97. 97.
    Geng HH, Li R, Su YM et al (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 11(3):e0151753PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Barrett SP, Parker KR, Horn C et al (2017) ciRS-7 exonic sequence is embedded in a long non-coding RNA locus. PLoS Genet 13(12):e1007114PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Zhao ZJ, Shen J (2017) Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biol 14(5):514–521PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Yu L, Gong X, Sun L et al (2016) The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. Hepatol Res Treat 11(7):e0158347Google Scholar
  101. 101.
    Xu L, Zhang M, Zheng X et al (2017) The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol 143(1):17–27PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Han D, Li J, Wang H et al (2017) Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66(4):1151–1164PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Yao Z, Luo J, Hu K et al (2017) ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways. Mol Oncol 11(4):422–437PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhang K, Che S, Su Z et al (2018) CD90 promotes cell migration, viability and sphere forming ability of hepatocellular carcinoma cells. Int J Mol Med 41(2):946–954PubMedPubMedCentralGoogle Scholar
  105. 105.
    Wang BG, Li JS, Liu YF et al (2017) MicroRNA-200b suppresses the invasion and migration of hepatocellular carcinoma by downregulating RhoA and circRNA_000839. Tumour Biol 39(7):1010428317719577PubMedPubMedCentralGoogle Scholar
  106. 106.
    Zhu Q, Lu G, Luo Z et al (2018) CircRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/beta-catenin axis. Biochem Biophys Res Commun 497(2):626–632PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Dong LQ, Shi Y, Ma LJ et al (2018) Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma. J Hepatol 69:89.  https://doi.org/10.1016/j.jhep.2018.02.029 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Lee DD, Croome KP, Musto KR et al (2018) Caveat emptor, liver transplantation for intrahepatic cholangiocarcinoma – a diagnostic conundrum for 44 patients at a single center. Liver Transpl 24:634.  https://doi.org/10.1002/lt.25052 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Merdrignac A, Angenard G, Allain C et al (2018) A novel transforming growth factor beta-induced long noncoding RNA promotes an inflammatory microenvironment in human intrahepatic cholangiocarcinoma. Hepatol Commun 2(3):254–269PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Xie L, Onysko J, Morrison H (2018) Childhood cancer incidence in Canada: demographic and geographic variation of temporal trends (1992-2010). Health Promot Chronic Dis Prev Can 38(3):79–115PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Zhong S, Zhao Y, Fan C (2018) Hepatoblastoma with pure fetal epithelial differentiation in a 10-year-old boy: a rare case report and review of the literature. Medicine (Baltimore) 97(2):e9647CrossRefGoogle Scholar
  112. 112.
    Liu BH, Zhang BB, Liu XQ et al (2018) Expression profiling identifies circular RNA signature in hepatoblastoma. Cell Physiol Biochem 45(2):706–719PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Li P, Chen S, Chen H et al (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Fu L, Yao T, Chen Q et al (2017) Screening differential circular RNA expression profiles reveals hsa_circ_0004018 is associated with hepatocellular carcinoma. Oncotarget 8(35):58405–58416PubMedPubMedCentralGoogle Scholar
  115. 115.
    Xu Y, Yao Y, Zhong X et al (2018) Downregulated circular RNA hsa_circ_0001649 regulates proliferation, migration and invasion in cholangiocarcinoma cells. Biochem Biophys Res Commun 496(2):455–461PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Blaya D, Aguilar-Bravo B, Hao F et al (2018) Expression of microRNA-155 in inflammatory cells modulates liver injury. Hepatology.  https://doi.org/10.1002/hep.29833 PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Bourgine M, Crabe S, Lobaina Y et al (2018) Nasal route favors the induction of CD4(+) T cell responses in the liver of HBV-carrier mice immunized with a recombinant hepatitis B surface- and core-based therapeutic vaccine. Antivir Res 153:23–32PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Neumann K, Rudolph C, Neumann C et al (2015) Liver sinusoidal endothelial cells induce immunosuppressive IL-10-producing Th1 cells via the Notch pathway. Eur J Immunol 45(7):2008–2016PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Zhuang S, Hua X, He K et al (2018) Inhibition of GSK-3beta induces AP-1-mediated osteopontin expression to promote cholestatic liver fibrosis. FASEB J:fj.201701137R.  https://doi.org/10.1096/fj.201701137R:fj201701137R
  120. 120.
    Kostallari E, Hirsova P, Prasnicka A et al (2018) Hepatic stellate cell-derived PDGFRalpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology.  https://doi.org/10.1002/hep.29803 PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    O’Leary JG, Demetris AJ, Philippe A et al (2017) Non-HLA antibodies impact on C4d staining, stellate cell activation and fibrosis in liver allografts. Transplantation 101(10):2399–2409PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Li TZ, Kim SM, Hur W et al (2017) Elk-3 contributes to the progression of liver fibrosis by regulating the epithelial-mesenchymal transition. Gut Liver 11(1):102–111PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Caiment F, Gaj S, Claessen S et al (2015) High-throughput data integration of RNA-miRNA-circRNA reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity. Nucleic Acids Res 43(5):2525–2534PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Jin X, Feng CY, Xiang Z et al (2016) CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis. Oncotarget 7(41):66455–66467PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Zhao Y, Alexandrov PN, Jaber V et al (2016) Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Genes (Basel) 7(12)CrossRefGoogle Scholar
  126. 126.
    Andres-Leon E, Nunez-Torres R, Rojas AM (2018) Corrigendum: miARma-Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis. Sci Rep 8:46928PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Hansen TB (2018) Improved circRNA identification by combining prediction algorithms. Front Cell Dev Biol 6:20PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Lei W, Feng T, Fang X et al (2018) Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes. Stem Cell Res Ther 9(1):56PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Liang J, Wu X, Sun S et al (2018) Circular RNA expression profile analysis of severe acne by RNA-seq and bioinformatics. J Eur Acad Dermatol Venereol.  https://doi.org/10.1111/jdv.14948
  130. 130.
    Jakobi T, Dieterich C (2018) Deep computational circular RNA analytics from RNA-seq data. Methods Mol Biol 1724:9–25CrossRefGoogle Scholar
  131. 131.
    Quan G, Li J (2018) Circular RNAs: biogenesis, expression and their potential roles in reproduction. J Ovarian Res 11(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Gao Y, Wang J, Zheng Y et al (2016) Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun 7:12060PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Zhao J, Li L, Wang Q et al (2017) CircRNA expression profile in early-stage lung adenocarcinoma patients. Cell Physiol Biochem 44(6):2138–2146PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Xia S, Feng J, Chen K et al (2018) CSCD: a database for cancer-specific circular RNAs. Nucleic Acids Res 46(D1):D925–D929CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Meiyi Song
    • 1
  • Lu Xia
    • 1
  • Mengxue Sun
    • 1
  • Changqing Yang
    • 1
  • Fei Wang
    • 1
    Email author
  1. 1.Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations