Advertisement

Circular RNAs pp 231-237 | Cite as

Circular RNAs in Brain Physiology and Disease

  • S. Gokul
  • G. K. RajanikantEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)

Abstract

Circular RNAs (circRNAs) are endogenously expressed non-coding RNAs discovered in the early 1990s as a transcriptional by-product of little importance. It was only recently that they were identified as a key player in regulating the gene expression by targeting and modulating the functions of microRNA, a process known as microRNA sponging. They are distributed throughout the system in a tissue-specific manner showing abundant enrichment in neuronal tissue. Their physiological functions in the brain such as neuronal maturation, differentiation, etc. as well as their implications in numerous brain-related disorders have made its entry into the spotlight. Yet the wider scope and molecular mechanism of circRNAs still remain elusive. In this chapter, we describe in detail the functional aspects and importance of circRNAs in the human brain and how it is associated with various neurological diseases.

Keywords

Circular RNA Brain Ischemic stroke Neurodegenerative diseases Brain tumour 

Abbreviations

circRNAs

Circular RNAs

GBM

Glioblastoma multiforme

MDD

Major depressive disorder

microRNAs

MicroRNAs

mRNA

Messenger RNA

MSA

Multiple system atrophy

ncRNA

Non-coding RNA

pre-mRNA

Precursor mRNA

SRSF1

Serine- and arginine-rich splicing factor 1

TBI

Traumatic brain injury

Notes

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. 1.
    Wang PL, Bao Y, Yee MC et al (2014) Circular RNA is expressed across the eukaryotic tree of life. PLoS One 9(6):e90859CrossRefGoogle Scholar
  2. 2.
    Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17(4):205–211CrossRefGoogle Scholar
  3. 3.
    Greene J, Baird AM, Brady L et al (2017) Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci 4:38CrossRefGoogle Scholar
  4. 4.
    Salzman J, Chen RE, Olsen MN et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777CrossRefGoogle Scholar
  5. 5.
    Rybak-Wolf A, Stottmeister C, Glazar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885CrossRefGoogle Scholar
  6. 6.
    Westholm JO, Miura P, Olson S et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980CrossRefGoogle Scholar
  7. 7.
    You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610CrossRefGoogle Scholar
  8. 8.
    Hanan M, Soreq H, Kadener S (2017) CircRNAs in the brain. RNA Biol 14(8):1028–1034CrossRefGoogle Scholar
  9. 9.
    Chen W, Schuman E (2016) Circular RNAs in brain and other tissues: a functional enigma. Trends Neurosci 39(9):597–604CrossRefGoogle Scholar
  10. 10.
    Chen BJ, Yang B, Janitz M (2018) Region-specific expression of circular RNAs in the mouse brain. Neurosci Lett 666:44–47CrossRefGoogle Scholar
  11. 11.
    Reddy AS, O'Brien D, Pisat N et al (2017) A comprehensive analysis of cell type-specific nuclear RNA from neurons and glia of the brain. Biol Psychiatry 81(3):252–264CrossRefGoogle Scholar
  12. 12.
    Gruner H, Cortes-Lopez M, Cooper DA et al (2016) CircRNA accumulation in the aging mouse brain. Sci Rep 6:38907CrossRefGoogle Scholar
  13. 13.
    Daniel C, Silberberg G, Behm M et al (2014) Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol 15(2):R28CrossRefGoogle Scholar
  14. 14.
    Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388CrossRefGoogle Scholar
  15. 15.
    van Rossum D, Verheijen BM, Pasterkamp RJ (2016) Circular RNAs: novel regulators of neuronal development. Front Mol Neurosci 9:74PubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu C, Zhang C, Yang J et al (2017) Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget 8(49):86535–86547PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lin SP, Ye S, Long Y et al (2016) Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun 471(1):52–56CrossRefGoogle Scholar
  18. 18.
    Mehta SL, Pandi G, Vemuganti R (2017) Circular RNA Expression Profiles Alter Significantly in Mouse Brain After Transient Focal Ischemia. Stroke 48(9):2541–2548CrossRefGoogle Scholar
  19. 19.
    Bai Y, Zhang Y, Han B et al (2018) Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci 38(1):32–50PubMedGoogle Scholar
  20. 20.
    Zheng J, Liu X, Xue Y et al (2017) TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1beta/Derlin-1 pathway. J Hematol Oncol 10(1):52CrossRefGoogle Scholar
  21. 21.
    Yang P, Qiu Z, Jiang Y et al (2016) Silencing of cZNF292 circular RNA suppresses human glioma tube formation via the Wnt/beta-catenin signaling pathway. Oncotarget 7(39):63449–63455PubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang Y, Gao X, Zhang M et al (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 110(3)Google Scholar
  23. 23.
    Zhu J, Ye J, Zhang L et al (2017) Differential expression of circular RNAs in glioblastoma multiforme and its correlation with prognosis. Transl Oncol 10(2):271–279CrossRefGoogle Scholar
  24. 24.
    Barbagallo D, Caponnetto A, Cirnigliaro M et al (2018) CircSMARCA5 inhibits migration of glioblastoma multiforme cells by regulating a molecular axis involving splicing factors SRSF1/SRSF3/PTB. Int J Mol Sci 19(2)CrossRefGoogle Scholar
  25. 25.
    Shi Z, Chen T, Yao Q et al (2017) The circular RNA ciRS-7 promotes APP and BACE1 degradation in an NF-kappaB-dependent manner. FEBS J 284(7):1096–1109CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Alexandrov PN, Jaber V et al (2016) Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s Disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Genes (Basel) 7(12):116CrossRefGoogle Scholar
  27. 27.
    Kumar L, Shamsuzzama, Jadiya P et al (2018) Functional characterization of novel circular RNA molecule, circzip-2 and its synthesizing gene zip-2 in C. elegans model of Parkinson’s disease. Mol Neurobiol.  https://doi.org/10.1007/s12035-018-0903-5 CrossRefGoogle Scholar
  28. 28.
    Chen BJ, Mills JD, Takenaka K et al (2016) Characterization of circular RNAs landscape in multiple system atrophy brain. J Neurochem 139(3):485–496CrossRefGoogle Scholar
  29. 29.
    Cui X, Niu W, Kong L et al (2016) hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in Major depressive disorder. Biomark Med 10(9):943–952CrossRefGoogle Scholar
  30. 30.
    Cardamone G, Paraboschi EM, Rimoldi V et al (2017) The characterization of GSDMB splicing and backsplicing profiles identifies novel isoforms and a circular RNA that are dysregulated in multiple sclerosis. Int J Mol Sci 18(3)CrossRefGoogle Scholar
  31. 31.
    Iparraguirre L, Munoz-Culla M, Prada-Luengo I et al (2017) Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet 26(18):3564–3572CrossRefGoogle Scholar
  32. 32.
    Huang R, Zhang Y, Han B et al (2017) Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG. Autophagy 13(10):1722–1741CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Biotechnology, National Institute of Technology CalicutCalicutIndia

Personalised recommendations