Circular RNAs pp 215-230 | Cite as

Circular RNAs in Cancer

  • Susanne Lux
  • Lars BullingerEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)


Circular RNAs (circRNAs) constitute a class of RNAs that only recently have come into the focus of the scientific cancer community after it was revealed that they are very abundant, highly conserved across species and show tissue- and developmental stage-specific expression. This tightly regulated, dynamic circRNA expression, in line with expression of messenger RNAs, microRNAs, and long noncoding RNAs, is altered in both solid tumors and hematologic malignancies and most likely contributes to tumorigenesis. In this chapter, we will review cancer-associated and cancer-specific circRNAs, some of which have oncogenic or tumor-suppressive potential. We will specifically focus on circRNAs for which the role in cancer has been studied in more detail, and we will discuss the opportunity to use circRNAs as biomarkers and potential therapeutic targets in cancer.


CircRNA MicroRNA Cancer Solid tumor Hematologic malignancies Oncogene Tumor suppressor 



This work was supported by the Deutsche Forschungsgemeinschaft (SFB 1074 project B3 to LB) and the Studienstiftung des Deutschen Volkes (doctoral grant to SL).

Competing Financial Interests

The authors declare no competing financial interests.


  1. 1.
    Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489(7414):101CrossRefPubMedCentralGoogle Scholar
  2. 2.
    ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57CrossRefGoogle Scholar
  3. 3.
    Rücker FG, Russ AC, Cocciardi S et al (2013) Altered miRNA and gene expression in acute myeloid leukemia with complex karyotype identify networks of prognostic relevance. Leukemia 27(2):353–361CrossRefGoogle Scholar
  4. 4.
    Russ AC, Sander S, Luck SC et al (2011) Integrative nucleophosmin mutation-associated microRNA and gene expression pattern analysis identifies novel microRNA-target gene interactions in acute myeloid leukemia. Haematologica 96(12):1783–1791CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Garzon R, Volinia S, Papaioannou D et al (2014) Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci U S A 111(52):18679–18684CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Garzon R, Volinia S, Liu C-G et al (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111(6):3183–3189CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Bryant A, Palma CA, Jayaswal V et al (2012) miR-10a is aberrantly overexpressed in Nucleophosmin1 mutated acute myeloid leukaemia and its suppression induces cell death. Mol Cancer 11(1):8CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Mott JL, Kobayashi S, Bronk SF et al (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26(42):6133CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Mercer TR, Dinger ME, Sunkin SM et al (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 105(2):716–721CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Dinger ME, Amaral PP, Mercer TR et al (2008) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18(9):1433–1445CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Xu W-H, Zhang J-B, Dang Z et al (2014) Long non-coding RNA URHC regulates cell proliferation and apoptosis via ZAK through the ERK/MAPK signaling pathway in hepatocellular carcinoma. Int J Biol Sci 10(7):664CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Askew DS, Li J, Ihle JN (1994) Retroviral insertions in the murine His-1 locus activate the expression of a novel RNA that lacks an extensive open reading frame. Mol Cell Biol 14(3):1743–1751CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Imamura T, Yamamoto S, Ohgane J et al (2004) Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res Commun 322(2):593–600CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lanz RB, McKenna NJ, Onate SA et al (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97(1):17–27CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157CrossRefPubMedCentralGoogle Scholar
  21. 21.
    You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gruner H, Cortés-López M, Cooper DA et al (2016) CircRNA accumulation in the aging mouse brain. Sci Rep 6:38907CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Legnini I, Di Timoteo G, Rossi F et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(1):22–37. e9CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Pamudurti NR, Bartok O, Jens M et al (2017) Translation of circRNAs. Mol Cell 66(1):9–21. e7CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Memczak S, Papavasileiou P, Peters O et al (2015) Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One 10(10):e0141214CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Bahn JH, Zhang Q, Li F et al (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61(1):221–230CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Li Y, Zheng Q, Bao C et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674CrossRefGoogle Scholar
  30. 30.
    Glažar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Liang H-F, Zhang X-Z, Liu B-G et al (2017) Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res 7(7):1566PubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhu X, Wang X, Wei S et al (2017) hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J 284(14):2170–2182CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Yang Q, Du WW, Wu N et al (2017) A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ 24(9):1609CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hsiao K-Y, Lin Y-C, Gupta SK et al (2017) Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res 77(9):2339–2350CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Yu L, Gong X, Sun L et al (2016) The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One 11(7):e0158347CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Weng W, Wei Q, Toden S et al (2017) Circular RNA ciRS-7—a promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res 23(14):3918–3928CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Barbagallo D, Condorelli A, Ragusa M et al (2016) Dysregulated miR-671-5p/CDR1-AS/CDR1/VSNL1 axis is involved in glioblastoma multiforme. Oncotarget 7(4):4746CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hirsch S, Blätte TJ, Grasedieck S et al (2017) Circular RNAs of the nucleophosmin (NPM1) gene in acute myeloid leukemia. Haematologica 102:2039–2047CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Li P, Chen H, Chen S et al (2017) Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer 116(5):626CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zeng K, Chen X, Xu M et al (2018) CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis 9(4):417CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Zheng Q, Bao C, Guo W et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Bachmayr-Heyda A, Reiner AT, Auer K et al (2015) Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5:8057CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Jin H, Jin X, Zhang H et al (2017) Circular RNA hsa-circ-0016347 promotes proliferation, invasion and metastasis of osteosarcoma cells. Oncotarget 8(15):25571PubMedPubMedCentralGoogle Scholar
  44. 44.
    Sand M, Bechara FG, Gambichler T et al (2016) Circular RNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci 83(3):210–218CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Sand M, Bechara FG, Sand D et al (2016) Circular RNA expression in basal cell carcinoma. Epigenomics 8(5):619–632CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Guarnerio J, Bezzi M, Jeong JC et al (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 165(2):289–302CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zhong Z, Huang M, Lv M et al (2017) Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett 403:305–317CrossRefGoogle Scholar
  48. 48.
    Xia W, Qiu M, Chen R et al (2016) Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation. Sci Rep 6:35576CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Chen J, Li Y, Zheng Q et al (2017) Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett 388:208–219CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Wan X-Y, Chu Z-B, Hu Y et al (2017) CircPVT1 inhibit apoptosis and enhance drug resistance in multiple myeloma. Blood 130:3085Google Scholar
  51. 51.
    Chen L, Zhang S, Wu J et al (2017) circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene 36(32):4551CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:30919CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Zheng J, Liu X, Xue Y et al (2017) TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol 10(1):52CrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zhang H, Wang G, Ding C et al (2017) Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget 8(37):61687PubMedPubMedCentralGoogle Scholar
  55. 55.
    Song X, Zhang N, Han P et al (2016) Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res 44(9):e87–e87CrossRefPubMedCentralGoogle Scholar
  56. 56.
    Yang Y, Gao X, Zhang M et al (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. JNCI: J Natl Cancer Inst 110(3)Google Scholar
  57. 57.
    Yang W, Du WW, Li X et al (2016) Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 35(30):3919CrossRefGoogle Scholar
  58. 58.
    Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Du WW, Fang L, Yang W et al (2017) Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 24(2):357CrossRefGoogle Scholar
  60. 60.
    Li Y, Zheng F, Xiao X et al (2017) CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep 18:e201643581CrossRefGoogle Scholar
  61. 61.
    Li F, Zhang L, Li W et al (2015) Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget 6(8):6001PubMedPubMedCentralGoogle Scholar
  62. 62.
    Huang G, Zhu H, Shi Y et al (2015) cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway. PloS One 10(6):e0131225CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Guo W, Zhang J, Zhang D et al (2017) Polymorphisms and expression pattern of circular RNA circ-ITCH contributes to the carcinogenesis of hepatocellular carcinoma. Oncotarget 8(29):48169PubMedPubMedCentralGoogle Scholar
  64. 64.
    Han D, Li J, Wang H et al (2017) Circular RNA MTO1 acts as the sponge of miR-9 to suppress hepatocellular carcinoma progression. Hepatology 66(4):1151CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Yu J, Xu Q-g, Wang Z-g et al (2018) Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J Hepatol 68:1214CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Fu L, Yao T, Chen Q et al (2017) Screening differential circular RNA expression profiles reveals hsa_circ_0004018 is associated with hepatocellular carcinoma. Oncotarget 8(35):58405PubMedPubMedCentralGoogle Scholar
  67. 67.
    Li W, Zhong C, Jiao J et al (2017) Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis. Int J Mol Sci 18(3):597CrossRefGoogle Scholar
  68. 68.
    Yao Z, Luo J, Hu K et al (2017) ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways. Mol Oncol 11(4):422–437CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Rybak-Wolf A, Stottmeister C, Glažar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885CrossRefGoogle Scholar
  70. 70.
    Conn SJ, Pillman KA, Toubia J et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134CrossRefPubMedCentralGoogle Scholar
  71. 71.
    Le Gouill S, Podar K, Harousseau J-L et al (2004) Mcl-1 regulation and its role in multiple myeloma. Cell Cycle 3(10):1259–1262CrossRefGoogle Scholar
  72. 72.
    Dolnik A, Engelmann JC, Scharfenberger-Schmeer M et al (2012) Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing. Blood 120(18):e83–e92CrossRefGoogle Scholar
  73. 73.
    Moalli PA, Pillay S, Krett NL et al (1993) Alternatively spliced glucocorticoid receptor messenger RNAs in glucocorticoid-resistant human multiple myeloma cells. Cancer Res 53(17):3877–3879PubMedGoogle Scholar
  74. 74.
    Sun L, Goodman PA, Wood CM et al (1999) Expression of aberrantly spliced oncogenic ikaros isoforms in childhood acute lymphoblastic leukemia. J Clin Oncol 17(12):3753–3766CrossRefGoogle Scholar
  75. 75.
    Janssen JW, Ludwig W-D, Borkhardt A et al (1994) Pre-pre-B acute lymphoblastic leukemia: high frequency of alternatively spliced ALL1-AF4 transcripts and absence of minimal residual disease during complete remission. Blood 84(11):3835–3842PubMedGoogle Scholar
  76. 76.
    Trang P, Weidhaas JB, Slack FJ (2017) MicroRNAs and cancer. In: The molecular basis of human cancer. Springer, New York, pp 277–286CrossRefGoogle Scholar
  77. 77.
    Jongen-Lavrencic M, Sun SM, Dijkstra MK et al (2008) MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111(10):5078–5085CrossRefGoogle Scholar
  78. 78.
    Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New Engl J Med 353(17):1793–1801CrossRefGoogle Scholar
  79. 79.
    Hansen TB, Wiklund ED, Bramsen JB et al (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30(21):4414–4422CrossRefPubMedCentralGoogle Scholar
  80. 80.
    Yu C-Y, Li T-C, Wu Y-Y et al (2017) The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun 8(1):1149CrossRefPubMedCentralGoogle Scholar
  81. 81.
    Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409CrossRefPubMedCentralGoogle Scholar
  82. 82.
    Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453CrossRefPubMedCentralGoogle Scholar
  83. 83.
    Thomas LF, Sætrom P (2014) Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics 30(16):2243–2246CrossRefPubMedCentralGoogle Scholar
  84. 84.
    Xu L, Zhang M, Zheng X et al (2017) The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol 143(1):17–27CrossRefPubMedCentralGoogle Scholar
  85. 85.
    Panda AC, Grammatikakis I, Kim KM et al (2016) Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res 45(7):4021–4035CrossRefGoogle Scholar
  86. 86.
    Yu J, Zhang L (2009) PUMA, a potent killer with or without p53. Oncogene 27(S1):S71CrossRefGoogle Scholar
  87. 87.
    Qu H, Zheng L, Pu J et al (2015) miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet 24(9):2539–2551CrossRefPubMedCentralGoogle Scholar
  88. 88.
    Polakis P (2000) Wnt signaling and cancer. Genes Dev 14(15):1837–1851PubMedPubMedCentralGoogle Scholar
  89. 89.
    Chen C-Y, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268(5209):415–417CrossRefPubMedCentralGoogle Scholar
  90. 90.
    Yang Y, Fan X, Mao M et al (2017) Extensive translation of circular RNAs driven by N 6-methyladenosine. Cell Res 27(5):626CrossRefPubMedCentralGoogle Scholar
  91. 91.
    Zhou C, Molinie B, Daneshvar K et al (2017) Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep 20(9):2262–2276CrossRefPubMedCentralGoogle Scholar
  92. 92.
    Kelley DR, Hendrickson DG, Tenen D et al (2014) Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions. Genome Biol 15(12):537CrossRefPubMedCentralGoogle Scholar
  93. 93.
    Ivanov A, Memczak S, Wyler E et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177CrossRefPubMedCentralGoogle Scholar
  94. 94.
    Shi H, Skibbe J, Shen C et al (2018) METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes Leukemogenesis via mRNA m 6 A modification. Cell Stem Cell 22:1–15CrossRefGoogle Scholar
  95. 95.
    Lin S, Choe J, Du P et al (2016) The m 6 A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell 62(3):335–345CrossRefPubMedCentralGoogle Scholar
  96. 96.
    Zhang X-O, Wang H-B, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147CrossRefPubMedCentralGoogle Scholar
  97. 97.
    Chen YG, Kim MV, Chen X et al (2017) Sensing self and foreign circular RNAs by intron identity. Mol Cell 67(2):228–238. e5CrossRefPubMedCentralGoogle Scholar
  98. 98.
    Abe N, Matsumoto K, Nishihara M et al (2015) Rolling circle translation of circular RNA in living human cells. Sci Rep 5:16435CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Internal Medicine IIIUniversity Hospital of UlmUlmGermany
  2. 2.Department of Hematology, Oncology and TumorimmunologyCharité – UniversitätsmedizinBerlinGermany

Personalised recommendations