Skip to main content

Circular RNAs in Cancer

  • Chapter
  • First Online:
Circular RNAs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1087))

Abstract

Circular RNAs (circRNAs) constitute a class of RNAs that only recently have come into the focus of the scientific cancer community after it was revealed that they are very abundant, highly conserved across species and show tissue- and developmental stage-specific expression. This tightly regulated, dynamic circRNA expression, in line with expression of messenger RNAs, microRNAs, and long noncoding RNAs, is altered in both solid tumors and hematologic malignancies and most likely contributes to tumorigenesis. In this chapter, we will review cancer-associated and cancer-specific circRNAs, some of which have oncogenic or tumor-suppressive potential. We will specifically focus on circRNAs for which the role in cancer has been studied in more detail, and we will discuss the opportunity to use circRNAs as biomarkers and potential therapeutic targets in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489(7414):101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57

    Article  Google Scholar 

  3. Rücker FG, Russ AC, Cocciardi S et al (2013) Altered miRNA and gene expression in acute myeloid leukemia with complex karyotype identify networks of prognostic relevance. Leukemia 27(2):353–361

    Article  PubMed  Google Scholar 

  4. Russ AC, Sander S, Luck SC et al (2011) Integrative nucleophosmin mutation-associated microRNA and gene expression pattern analysis identifies novel microRNA-target gene interactions in acute myeloid leukemia. Haematologica 96(12):1783–1791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Garzon R, Volinia S, Papaioannou D et al (2014) Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci U S A 111(52):18679–18684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198

    Article  CAS  PubMed  Google Scholar 

  7. Garzon R, Volinia S, Liu C-G et al (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111(6):3183–3189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bryant A, Palma CA, Jayaswal V et al (2012) miR-10a is aberrantly overexpressed in Nucleophosmin1 mutated acute myeloid leukaemia and its suppression induces cell death. Mol Cancer 11(1):8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Mott JL, Kobayashi S, Bronk SF et al (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26(42):6133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Mercer TR, Dinger ME, Sunkin SM et al (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 105(2):716–721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Dinger ME, Amaral PP, Mercer TR et al (2008) Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 18(9):1433–1445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Xu W-H, Zhang J-B, Dang Z et al (2014) Long non-coding RNA URHC regulates cell proliferation and apoptosis via ZAK through the ERK/MAPK signaling pathway in hepatocellular carcinoma. Int J Biol Sci 10(7):664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Askew DS, Li J, Ihle JN (1994) Retroviral insertions in the murine His-1 locus activate the expression of a novel RNA that lacks an extensive open reading frame. Mol Cell Biol 14(3):1743–1751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Imamura T, Yamamoto S, Ohgane J et al (2004) Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res Commun 322(2):593–600

    Article  CAS  PubMed  Google Scholar 

  17. Lanz RB, McKenna NJ, Onate SA et al (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97(1):17–27

    Article  CAS  PubMed  Google Scholar 

  18. Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333

    Article  CAS  PubMed  Google Scholar 

  20. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gruner H, Cortés-López M, Cooper DA et al (2016) CircRNA accumulation in the aging mouse brain. Sci Rep 6:38907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384

    Article  CAS  PubMed  Google Scholar 

  24. Legnini I, Di Timoteo G, Rossi F et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(1):22–37. e9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pamudurti NR, Bartok O, Jens M et al (2017) Translation of circRNAs. Mol Cell 66(1):9–21. e7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Memczak S, Papavasileiou P, Peters O et al (2015) Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One 10(10):e0141214

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bahn JH, Zhang Q, Li F et al (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61(1):221–230

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Zheng Q, Bao C et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  30. Glažar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670

    Article  PubMed Central  PubMed  Google Scholar 

  31. Liang H-F, Zhang X-Z, Liu B-G et al (2017) Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res 7(7):1566

    PubMed  PubMed Central  Google Scholar 

  32. Zhu X, Wang X, Wei S et al (2017) hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J 284(14):2170–2182

    Article  CAS  PubMed  Google Scholar 

  33. Yang Q, Du WW, Wu N et al (2017) A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ 24(9):1609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hsiao K-Y, Lin Y-C, Gupta SK et al (2017) Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res 77(9):2339–2350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Yu L, Gong X, Sun L et al (2016) The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One 11(7):e0158347

    Article  PubMed Central  PubMed  Google Scholar 

  36. Weng W, Wei Q, Toden S et al (2017) Circular RNA ciRS-7—a promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res 23(14):3918–3928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Barbagallo D, Condorelli A, Ragusa M et al (2016) Dysregulated miR-671-5p/CDR1-AS/CDR1/VSNL1 axis is involved in glioblastoma multiforme. Oncotarget 7(4):4746

    Article  PubMed  Google Scholar 

  38. Hirsch S, Blätte TJ, Grasedieck S et al (2017) Circular RNAs of the nucleophosmin (NPM1) gene in acute myeloid leukemia. Haematologica 102:2039–2047

    Article  PubMed Central  PubMed  Google Scholar 

  39. Li P, Chen H, Chen S et al (2017) Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer 116(5):626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zeng K, Chen X, Xu M et al (2018) CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis 9(4):417

    Article  PubMed Central  PubMed  Google Scholar 

  41. Zheng Q, Bao C, Guo W et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Bachmayr-Heyda A, Reiner AT, Auer K et al (2015) Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5:8057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Jin H, Jin X, Zhang H et al (2017) Circular RNA hsa-circ-0016347 promotes proliferation, invasion and metastasis of osteosarcoma cells. Oncotarget 8(15):25571

    PubMed  PubMed Central  Google Scholar 

  44. Sand M, Bechara FG, Gambichler T et al (2016) Circular RNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci 83(3):210–218

    Article  CAS  PubMed  Google Scholar 

  45. Sand M, Bechara FG, Sand D et al (2016) Circular RNA expression in basal cell carcinoma. Epigenomics 8(5):619–632

    Article  CAS  PubMed  Google Scholar 

  46. Guarnerio J, Bezzi M, Jeong JC et al (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 165(2):289–302

    Article  CAS  PubMed  Google Scholar 

  47. Zhong Z, Huang M, Lv M et al (2017) Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett 403:305–317

    Article  CAS  PubMed  Google Scholar 

  48. Xia W, Qiu M, Chen R et al (2016) Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation. Sci Rep 6:35576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Chen J, Li Y, Zheng Q et al (2017) Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett 388:208–219

    Article  CAS  PubMed  Google Scholar 

  50. Wan X-Y, Chu Z-B, Hu Y et al (2017) CircPVT1 inhibit apoptosis and enhance drug resistance in multiple myeloma. Blood 130:3085

    Google Scholar 

  51. Chen L, Zhang S, Wu J et al (2017) circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene 36(32):4551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:30919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Zheng J, Liu X, Xue Y et al (2017) TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol 10(1):52

    Article  PubMed Central  PubMed  Google Scholar 

  54. Zhang H, Wang G, Ding C et al (2017) Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget 8(37):61687

    PubMed  PubMed Central  Google Scholar 

  55. Song X, Zhang N, Han P et al (2016) Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res 44(9):e87–e87

    Article  PubMed Central  PubMed  Google Scholar 

  56. Yang Y, Gao X, Zhang M et al (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. JNCI: J Natl Cancer Inst 110(3)

    Google Scholar 

  57. Yang W, Du WW, Li X et al (2016) Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 35(30):3919

    Article  CAS  PubMed  Google Scholar 

  58. Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858

    Article  PubMed Central  PubMed  Google Scholar 

  59. Du WW, Fang L, Yang W et al (2017) Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 24(2):357

    Article  CAS  PubMed  Google Scholar 

  60. Li Y, Zheng F, Xiao X et al (2017) CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep 18:e201643581

    Article  Google Scholar 

  61. Li F, Zhang L, Li W et al (2015) Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget 6(8):6001

    PubMed  PubMed Central  Google Scholar 

  62. Huang G, Zhu H, Shi Y et al (2015) cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway. PloS One 10(6):e0131225

    Article  PubMed Central  PubMed  Google Scholar 

  63. Guo W, Zhang J, Zhang D et al (2017) Polymorphisms and expression pattern of circular RNA circ-ITCH contributes to the carcinogenesis of hepatocellular carcinoma. Oncotarget 8(29):48169

    PubMed  PubMed Central  Google Scholar 

  64. Han D, Li J, Wang H et al (2017) Circular RNA MTO1 acts as the sponge of miR-9 to suppress hepatocellular carcinoma progression. Hepatology 66(4):1151

    Article  CAS  PubMed  Google Scholar 

  65. Yu J, Xu Q-g, Wang Z-g et al (2018) Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J Hepatol 68:1214

    Article  CAS  PubMed  Google Scholar 

  66. Fu L, Yao T, Chen Q et al (2017) Screening differential circular RNA expression profiles reveals hsa_circ_0004018 is associated with hepatocellular carcinoma. Oncotarget 8(35):58405

    PubMed  PubMed Central  Google Scholar 

  67. Li W, Zhong C, Jiao J et al (2017) Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis. Int J Mol Sci 18(3):597

    Article  PubMed Central  Google Scholar 

  68. Yao Z, Luo J, Hu K et al (2017) ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways. Mol Oncol 11(4):422–437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Rybak-Wolf A, Stottmeister C, Glažar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885

    Article  CAS  PubMed  Google Scholar 

  70. Conn SJ, Pillman KA, Toubia J et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134

    Article  CAS  PubMed  Google Scholar 

  71. Le Gouill S, Podar K, Harousseau J-L et al (2004) Mcl-1 regulation and its role in multiple myeloma. Cell Cycle 3(10):1259–1262

    Article  PubMed  Google Scholar 

  72. Dolnik A, Engelmann JC, Scharfenberger-Schmeer M et al (2012) Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing. Blood 120(18):e83–e92

    Article  CAS  PubMed  Google Scholar 

  73. Moalli PA, Pillay S, Krett NL et al (1993) Alternatively spliced glucocorticoid receptor messenger RNAs in glucocorticoid-resistant human multiple myeloma cells. Cancer Res 53(17):3877–3879

    CAS  PubMed  Google Scholar 

  74. Sun L, Goodman PA, Wood CM et al (1999) Expression of aberrantly spliced oncogenic ikaros isoforms in childhood acute lymphoblastic leukemia. J Clin Oncol 17(12):3753–3766

    Article  CAS  PubMed  Google Scholar 

  75. Janssen JW, Ludwig W-D, Borkhardt A et al (1994) Pre-pre-B acute lymphoblastic leukemia: high frequency of alternatively spliced ALL1-AF4 transcripts and absence of minimal residual disease during complete remission. Blood 84(11):3835–3842

    CAS  PubMed  Google Scholar 

  76. Trang P, Weidhaas JB, Slack FJ (2017) MicroRNAs and cancer. In: The molecular basis of human cancer. Springer, New York, pp 277–286

    Chapter  Google Scholar 

  77. Jongen-Lavrencic M, Sun SM, Dijkstra MK et al (2008) MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111(10):5078–5085

    Article  CAS  PubMed  Google Scholar 

  78. Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New Engl J Med 353(17):1793–1801

    Article  CAS  PubMed  Google Scholar 

  79. Hansen TB, Wiklund ED, Bramsen JB et al (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30(21):4414–4422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Yu C-Y, Li T-C, Wu Y-Y et al (2017) The circular RNA circBIRC6 participates in the molecular circuitry controlling human pluripotency. Nat Commun 8(1):1149

    Article  PubMed Central  PubMed  Google Scholar 

  81. Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409

    Article  PubMed Central  PubMed  Google Scholar 

  82. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Thomas LF, Sætrom P (2014) Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics 30(16):2243–2246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Xu L, Zhang M, Zheng X et al (2017) The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol 143(1):17–27

    Article  PubMed  Google Scholar 

  85. Panda AC, Grammatikakis I, Kim KM et al (2016) Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res 45(7):4021–4035

    Article  PubMed Central  Google Scholar 

  86. Yu J, Zhang L (2009) PUMA, a potent killer with or without p53. Oncogene 27(S1):S71

    Article  Google Scholar 

  87. Qu H, Zheng L, Pu J et al (2015) miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet 24(9):2539–2551

    Article  CAS  PubMed  Google Scholar 

  88. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14(15):1837–1851

    CAS  PubMed  Google Scholar 

  89. Chen C-Y, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268(5209):415–417

    Article  CAS  PubMed  Google Scholar 

  90. Yang Y, Fan X, Mao M et al (2017) Extensive translation of circular RNAs driven by N 6-methyladenosine. Cell Res 27(5):626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Zhou C, Molinie B, Daneshvar K et al (2017) Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep 20(9):2262–2276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Kelley DR, Hendrickson DG, Tenen D et al (2014) Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions. Genome Biol 15(12):537

    Article  PubMed Central  PubMed  Google Scholar 

  93. Ivanov A, Memczak S, Wyler E et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177

    Article  CAS  PubMed  Google Scholar 

  94. Shi H, Skibbe J, Shen C et al (2018) METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes Leukemogenesis via mRNA m 6 A modification. Cell Stem Cell 22:1–15

    Article  Google Scholar 

  95. Lin S, Choe J, Du P et al (2016) The m 6 A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell 62(3):335–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Zhang X-O, Wang H-B, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147

    Article  CAS  PubMed  Google Scholar 

  97. Chen YG, Kim MV, Chen X et al (2017) Sensing self and foreign circular RNAs by intron identity. Mol Cell 67(2):228–238. e5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Abe N, Matsumoto K, Nishihara M et al (2015) Rolling circle translation of circular RNA in living human cells. Sci Rep 5:16435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 1074 project B3 to LB) and the Studienstiftung des Deutschen Volkes (doctoral grant to SL).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Bullinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lux, S., Bullinger, L. (2018). Circular RNAs in Cancer. In: Xiao, J. (eds) Circular RNAs. Advances in Experimental Medicine and Biology, vol 1087. Springer, Singapore. https://doi.org/10.1007/978-981-13-1426-1_17

Download citation

Publish with us

Policies and ethics