Advertisement

Circular RNAs pp 191-204 | Cite as

Circular RNAs in Cardiovascular Diseases

  • Lijun Wang
  • Xiangmin Meng
  • Guoping Li
  • Qiulian Zhou
  • Junjie XiaoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)

Abstract

Circular RNAs (circRNAs), a group of circular RNA molecules with a 3′,5′-phosphodiester bond at the junction site, are generated by back-splicing of precursor mRNAs. Most of the circular RNAs originate from the exon region of the encoded protein, and some are derived from intron regions, antisense transcripts, or long noncoding RNAs. Circular RNAs are abundantly in eukaryotic transcriptome and participate in various biological processes. It is closely associated with various diseases such as tumors, diabetes, nervous system diseases, and cardiovascular diseases. In cardiovascular system, numerous circRNAs have been identified and involved in important processes of cardiovascular development and diseases. Here we will review the latest research progress of circular RNA in cardiovascular diseases. Also, we will outline the specific examples of circRNAs involved in cardiovascular system regulatory effects, including act as miRNA sponges, interaction with RNA-binding proteins, regulated by RNA-binding proteins and serve as biomarkers. In addition, potential mechanisms underlying the regulatory role of circRNAs in cardiovascular diseases will be discussed.

Keywords

Circular RNA microRNA RNA-binding protein Cardiovascular diseases 

Notes

Acknowledgments

The authors thank members of the Cardiac Regeneration and Ageing Lab in Shanghai University for the discussion. Due to space restrictions, the authors cannot cite all the relevant literature in the field. The authors apologize to those colleagues whose work contributed significantly. This work was supported by the grants from the National Natural Science Foundation of China (81722008, 91639101, and 81570362 to JJ Xiao), the Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042 to JJ Xiao), the grant from the Science and Technology Commission of Shanghai Municipality (17010500100 to JJ Xiao), and the development fund for Shanghai talents (to JJ Xiao).

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. 1.
    Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Cocquerelle C, Daubersies P, Majerus MA et al (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J 11(3):1095–1098PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Cocquerelle C, Mascrez B, Hetuin D et al (1993) Mis-splicing yields circular RNA molecules. FASEB J 7(1):155–160PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lu C, Shi X, Wang AY et al (2018) RNA-Seq profiling of circular RNAs in human laryngeal squamous cell carcinomas. Mol Cancer 17(1):86PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    AbouHaidar MG, Venkataraman S, Golshani A et al (2014) Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc Natl Acad Sci USA 111(40):14542–14547PubMedCrossRefGoogle Scholar
  7. 7.
    Salzman J, Chen RE, Olsen MN et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Barrett SP, Wang PL, Salzman J (2015) Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4:e07540PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Starke S, Jost I, Rossbach O et al (2015) Exon circularization requires canonical splice signals. Cell Rep 10(1):103–111PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wilusz JE (2015) Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements 5(3):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Liang D, Tatomer DC, Luo Z et al (2017) The output of protein-coding genes shifts to circular RNAs when the Pre-mRNA processing machinery is limiting. Mol Cell 68(5):940–954 e3PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wilusz J (2015) Circular RNA and splicing: skip happens. J Mol Biol 427(15):2411–2413PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zhang XO, Wang HB, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Conn SJ, Pillman KA, Toubia J et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ivanov A, Memczak S, Wyler E et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang Y, Zhang XO, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Yang L, Han B, Zhang Y et al (2018) Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 14(3):404–418PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Zheng Q, Bao C, Guo W et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lin SP, Ye S, Long Y et al (2016) Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun 471(1):52–56CrossRefGoogle Scholar
  23. 23.
    Veno MT, Hansen TB, Veno ST et al (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16:245PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Szabo L, Morey R, Palpant NJ et al (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16:126PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307PubMedPubMedCentralGoogle Scholar
  26. 26.
    You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Qu S, Zhong Y, Shang R et al (2017) The emerging landscape of circular RNA in life processes. RNA Biol 14(8):992–999PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Salzman J (2016) Circular RNA expression: its potential regulation and function. Trends Genet 32(5):309–316PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Qu S, Yang X, Li X et al (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365(2):141–148PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838–1847PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17(4):205–211PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    de Bruin RG, Rabelink TJ, van Zonneveld AJ et al (2017) Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. Eur Heart J 38(18):1380–1388PubMedGoogle Scholar
  34. 34.
    Fischer JW, Leung AK (2017) CircRNAs: a regulator of cellular stress. Crit Rev Biochem Mol Biol 52(2):220–233PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Viereck J, Thum T (2017) Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 120(2):381–399PubMedCrossRefGoogle Scholar
  36. 36.
    Du WW, Zhang C, Yang W et al (2017) Identifying and characterizing circRNA-protein interaction. Theranostics 7(17):4183–4191PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Cheng S, Vasan RS (2011) Advances in the epidemiology of heart failure and left ventricular remodeling. Circulation 124(20):e516–e519PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Dorn GW 2nd (2007) The fuzzy logic of physiological cardiac hypertrophy. Hypertension 49(5):962–970PubMedCrossRefGoogle Scholar
  39. 39.
    Han B, Chao J, Yao H (2018) Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther.  https://doi.org/10.1016/j.pharmthera.2018.01.010 CrossRefGoogle Scholar
  40. 40.
    Viereck J, Thum T (2017) Long noncoding RNAs in pathological cardiac remodeling. Circ Res 120(2):262–264PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128(4):388–400PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Tan WL, Lim BT, Anene-Nzelu CG et al (2017) A landscape of circular RNA expression in the human heart. Cardiovasc Res 113(3):298–309Google Scholar
  43. 43.
    Werfel S, Nothjunge S, Schwarzmayr T et al (2016) Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 98:103–107CrossRefPubMedGoogle Scholar
  44. 44.
    Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen CZ, Li L, Lodish HF et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    O’Connell RM, Zhao JL, Rao DS (2011) MicroRNA function in myeloid biology. Blood 118(11):2960–2969PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Gao Y, Lin L, Li T et al (2017) The role of miRNA-223 in cancer: function, diagnosis and therapy. Gene 616:1–7PubMedCrossRefGoogle Scholar
  48. 48.
    Johnnidis JB, Harris MH, Wheeler RT et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451(7182):1125–1129PubMedCrossRefGoogle Scholar
  49. 49.
    Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86(3):410–420PubMedCrossRefGoogle Scholar
  50. 50.
    Parikh NI, Gona P, Larson MG et al (2009) Long-term trends in myocardial infarction incidence and case fatality in the National Heart, Lung, and Blood Institute’s Framingham Heart study. Circulation 119(9):1203–1210PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Saparov A, Ogay V, Nurgozhin T et al (2017) Role of the immune system in cardiac tissue damage and repair following myocardial infarction. Inflamm Res 66(9):739–751PubMedCrossRefGoogle Scholar
  52. 52.
    Oerlemans MI, Koudstaal S, Chamuleau SA et al (2013) Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. Int J Cardiol 165(3):410–422PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121(22):2437–2445PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73(18):5609–5612CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Peng L, Yuan XQ, Li GC (2015) The emerging landscape of circular RNA ciRS-7 in cancer (Review). Oncol Rep 33(6):2669–2674PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Piwecka M, Glazar P, Hernandez-Miranda LR et al (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357(6357)PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Geng HH, Li R, Su YM et al (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 11(3):e0151753PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Tondera D, Czauderna F, Paulick K et al (2005) The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J Cell Sci 118(Pt 14):3049–3059PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Tondera D, Santel A, Schwarzer R et al (2004) Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis. J Biol Chem 279(30):31544–31555PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Wang K, Gan TY, Li N et al (2017) Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ 24(6):1111–1120PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Segura AM, Frazier OH, Buja LM (2014) Fibrosis and heart failure. Heart Fail Rev 19(2):173–185PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Tang CM, Zhang M, Huang L et al (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 7:40342PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Zhou B, Yu JW (2017) A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta1. Biochem Biophys Res Commun 487(4):769–775PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Du WW, Yang W, Chen Y et al (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38(18):1402–1412PubMedPubMedCentralGoogle Scholar
  67. 67.
    Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Seong HA, Jung H, Choi HS et al (2005) Regulation of transforming growth factor-beta signaling and PDK1 kinase activity by physical interaction between PDK1 and serine-threonine kinase receptor-associated protein. J Biol Chem 280(52):42897–42908PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zeng Y, Du WW, Wu Y et al (2017) A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 7(16):3842–3855PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Burd CE, Jeck WR, Liu Y et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Holdt LM, Stahringer A, Sass K et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Grimm T, Holzel M, Rohrmoser M et al (2006) Dominant-negative Pes1 mutants inhibit ribosomal RNA processing and cell proliferation via incorporation into the PeBoW-complex. Nucleic Acids Res 34(10):3030–3043PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Rohrmoser M, Holzel M, Grimm T et al (2007) Interdependence of Pes1, Bop1, and WDR12 controls nucleolar localization and assembly of the PeBoW complex required for maturation of the 60S ribosomal subunit. Mol Cell Biol 27(10):3682–3694PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Holzel M, Grimm T, Rohrmoser M et al (2007) The BRCT domain of mammalian Pes1 is crucial for nucleolar localization and rRNA processing. Nucleic Acids Res 35(3):789–800PubMedCrossRefGoogle Scholar
  75. 75.
    Errichelli L, Dini Modigliani S, Laneve P et al (2017) FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun 8:14741PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Bayfield OW, Chen CS, Patterson AR et al (2012) Trp RNA-binding attenuation protein: modifying symmetry and stability of a circular oligomer. PLoS One 7(9):e44309PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Gupta SK, Garg A, Bar C et al (2018) Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression. Circ Res 122(2):246–254PubMedCrossRefGoogle Scholar
  78. 78.
    Khan MA, Reckman YJ, Aufiero S et al (2016) RBM20 regulates circular RNA production from the Titin gene. Circ Res 119(9):996–1003PubMedGoogle Scholar
  79. 79.
    Guo W, Schafer S, Greaser ML et al (2012) RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med 18(5):766–773PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Boeckel JN, Jae N, Heumuller AW et al (2015) Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res 117(10):884–890PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Yan L, Feng J, Cheng F et al (2018) Circular RNA expression profiles in placental villi from women with gestational diabetes mellitus. Biochem Biophys Res Commun 498(4):743–750PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Xu H, Gong Z, Shen Y et al (2018) Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics 10(2):187–197PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Li T, Shao Y, Fu L et al (2018) Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med (Berl) 96(1):85–96CrossRefGoogle Scholar
  84. 84.
    Zheng F, Yu X, Huang J et al (2017) Circular RNA expression profiles of peripheral blood mononuclear cells in rheumatoid arthritis patients, based on microarray chip technology. Mol Med Rep 16(6):8029–8036PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Wu N, Jin L, Cai J (2017) Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens 39(5):454–459PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Alhasan AA, Izuogu OG, Al-Balool HH et al (2016) Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood 127(9):e1–e11PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Li Y, Zheng Q, Bao C et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981–984PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Bahn JH, Zhang Q, Li F et al (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61(1):221–230PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Hang D, Zhou J, Qin N et al (2018) A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med.  https://doi.org/10.1002/cam4.1514 PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Zhang S, Zeng X, Ding T et al (2018) Microarray profile of circular RNAs identifies hsa_circ_0014130 as a new circular RNA biomarker in non-small cell lung cancer. Sci Rep 8(1):2878PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Tan S, Gou Q, Pu W et al (2018) Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res.  https://doi.org/10.1038/s41422-018-0033-7 PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Sun H, Tang W, Rong D et al (2018) Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark 21(2):299–306PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Li H, Li K, Lai W et al (2018) Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta 480:17–25PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Chen B, Huang S (2018) Circular RNA: an emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett 418:41–50PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Iparraguirre L, Munoz-Culla M, Prada-Luengo I et al (2017) Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet 26(18):3564–3572CrossRefGoogle Scholar
  96. 96.
    Xuan L, Qu L, Zhou H et al (2016) Circular RNA: a novel biomarker for progressive laryngeal cancer. Am J Transl Res 8(2):932–939PubMedPubMedCentralGoogle Scholar
  97. 97.
    Qin M, Liu G, Huo X et al (2016) Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark 16(1):161–169CrossRefGoogle Scholar
  98. 98.
    Li P, Chen S, Chen H et al (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Vausort M, Salgado-Somoza A, Zhang L et al (2016) Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J Am Coll Cardiol 68(11):1247–1248PubMedCrossRefGoogle Scholar
  100. 100.
    Deng Y-YaZ, Weiping and She, Jianqing and Zhang, Lisa and Chen, Tao and Zhou, Juan and Yuan, Zu-Yi (2016) GW27-e1167 circular RNA related to PPARγ function as ceRNA of microRNA in human acute myocardial infarction. J Am Coll Cardiol 68:C51–C52Google Scholar
  101. 101.
    Zhao Z, Li X, Gao C et al (2017) Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 7:39918PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Jakobi T, Czaja-Hasse LF, Reinhardt R et al (2016) Profiling and validation of the circular RNA repertoire in adult murine hearts. Genomics Proteomics Bioinformatics 14(4):216–223PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Wu HJ, Zhang CY, Zhang S et al (2016) Microarray expression profile of circular RNAs in heart tissue of mice with myocardial infarction-induced heart failure. Cell Physiol Biochem 39(1):205–216PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Abe N, Matsumoto K, Nishihara M et al (2015) Rolling circle translation of circular RNA in living human cells. Sci Rep 5:16435PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Abe N, Hiroshima M, Maruyama H et al (2013) Rolling circle amplification in a prokaryotic translation system using small circular RNA. Angew Chem Int Ed Engl 52(27):7004–7008PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Wang Y, Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs. RNA 21(2):172–179PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Pamudurti NR, Bartok O, Jens M et al (2017) Translation of CircRNAs. Mol Cell 66(1):9–21 e27PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Yang Y, Fan X, Mao M et al (2017) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27(5):626–641PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Yang Y, Gao X, Zhang M et al (2018) Novel role of FBXW7 circular RNA in repressing Glioma tumorigenesis. J Natl Cancer Inst 110(3)Google Scholar
  110. 110.
    Legnini I, Di Timoteo G, Rossi F et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(1):22–37 e29PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Lenk K, Erbs S, Hollriegel R et al (2012) Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur J Prev Cardiol 19(3):404–411PubMedCrossRefGoogle Scholar
  112. 112.
    Wei X, Liu X, Rosenzweig A (2015) What do we know about the cardiac benefits of exercise? Trends Cardiovasc Med 25(6):529–536PubMedCrossRefGoogle Scholar
  113. 113.
    Fleg JL, Cooper LS, Borlaug BA et al (2015) Exercise training as therapy for heart failure: current status and future directions. Circ Heart Fail 8(1):209–220PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Lerchenmuller C, Rosenzweig A (2014) Mechanisms of exercise-induced cardiac growth. Drug Discov Today 19(7):1003–1009PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Fujimoto N, Prasad A, Hastings JL et al (2010) Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age. Circulation 122(18):1797–1805PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Young DR, Reynolds K, Sidell M et al (2014) Effects of physical activity and sedentary time on the risk of heart failure. Circ Heart Fail 7(1):21–27PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Weeks KL, McMullen JR (2011) The athlete’s heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology (Bethesda) 26(2):97–105Google Scholar
  118. 118.
    Calvert JW, Condit ME, Aragon JP et al (2011) Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res 108(12):1448–1458PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    McMullen JR, Amirahmadi F, Woodcock EA et al (2007) Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci USA 104(2):612–617PubMedCrossRefGoogle Scholar
  120. 120.
    McMullen JR, Shioi T, Zhang L et al (2003) Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci USA 100(21):12355–12360PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    DeBosch B, Treskov I, Lupu TS et al (2006) Akt1 is required for physiological cardiac growth. Circulation 113(17):2097–2104PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Zou J, Li H, Chen X et al (2014) C/EBPbeta knockdown protects cardiomyocytes from hypertrophy via inhibition of p65-NFkappaB. Mol Cell Endocrinol 390(1–2):18–25PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Bostrom P, Mann N, Wu J et al (2010) C/EBPbeta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143(7):1072–1083PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Bernardo BC, Ooi JY, Lin RC et al (2015) miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem 7(13):1771–1792PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Yang L, Li Y, Wang X et al (2016) Overexpression of miR-223 tips the balance of pro- and anti-hypertrophic signaling cascades toward physiologic cardiac hypertrophy. J Biol Chem 291(30):15700–15713PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Liu X, Xiao J, Zhu H et al (2015) miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 21(4):584–595PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Shi J, Bei Y, Kong X et al (2017) miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics 7(3):664–676PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lijun Wang
    • 1
    • 2
  • Xiangmin Meng
    • 1
    • 2
  • Guoping Li
    • 3
  • Qiulian Zhou
    • 4
    • 1
    • 2
  • Junjie Xiao
    • 5
    Email author
  1. 1.Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life ScienceShanghai UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Bio-Energy Crops, School of Life SciencesShanghai UniversityShanghaiChina
  3. 3.Cardiovascular Division of the Massachusetts General Hospital, Harvard Medical SchoolBostonUSA
  4. 4.Shanghai Applied Radiation Institute, School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  5. 5.School of Life Science, Institute of Cardiovascular SciencesShanghai UniversityShanghaiChina

Personalised recommendations