Advertisement

Circular RNAs pp 171-187 | Cite as

Circular RNAs as Biomarkers for Cancer

  • Lu Xia
  • Meiyi Song
  • Mengxue Sun
  • Fei WangEmail author
  • Changqing YangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)

Abstract

As a type of novel noncoding RNAs, circular RNAs (circRNAs) have attracted great interest due to its different characteristics from linear RNAs. They are abundantly and stably present in the transcriptome of eukaryotic cells, with development stage specificity and high conservatism. Because circRNAs are not easily degraded by exonuclease RNase R, they can exist more stably in body fluids than linear RNAs. Based on these unique conditions, circRNAs have great potential value as clinical diagnostic and prognostic markers. As the research deepens, more and more evidences suggest that circRNAs may be closely associated with many diseases, especially cancer. Numerous studies have demonstrated the abnormal expression of circRNAs in cancer, and they can regulate the occurrence and progression of cancer by targeting key genes. Abundant circRNAs in tissues and cells can be released into saliva and blood. It is undeniable that circRNAs are a class of promising future biomarkers for cancer diagnosis and prognosis. Here we summarize the researches on circRNAs and cancer over the past few years. We expect this summary to be a stepping stone to further exploration of possible circRNAs as cancer biomarkers.

Keywords

Circular RNAs (circRNAs) Cancer Biomarkers Diagnosis Prognosis 

Notes

Acknowledgments

This work was supported by the grants from National Natural Science Foundation of China (81670571 and 81370559 to C. Yang; 81400635 to F. Wang), Joint Projects in Major Diseases funding from Shanghai Municipal Commission of Health and Family Planning (2014ZYJB0201 to C. Yang), Joint Projects for Novel Frontier Technology in Shanghai Municipal Hospital from Shanghai Municipal Commission of Health and Family Planning (SHDC12014122 to C. Yang), Shanghai Medical Guide Project from Shanghai Science and Technology Committee (14411971500 to F. Wang), grants from Chinese Foundation for Hepatitis Prevention and Control (TQGB20140141 to F. Wang), and funds from Shanghai Innovation Program (12431901002 to C. Yang).

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. 1.
    Sanger HL, Klotz G, Riesner D et al (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73(11):3852–3856CrossRefGoogle Scholar
  2. 2.
    Sorber K, Dimon MT, Derisi JL (2011) RNA-Seq analysis of splicing in Plasmodium falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts. Nucleic Acids Res 39(9):3820–3835PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hsiao KY, Sun HS, Tsai SJ (2017) Circular RNA – New member of noncoding RNA with novel functions. Exp Biol Med 242(11):1136CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Zhang XO, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256CrossRefPubMedGoogle Scholar
  7. 7.
    Rybakwolf A, Stottmeister C, Glažar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870CrossRefGoogle Scholar
  8. 8.
    Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Dusek L, Muzik J, Maluskova D et al (2014) Epidemiology of screening-targeted cancers according to new data of the Czech National Cancer Registry. Klin Onkol 27(Suppl 2):19–39PubMedPubMedCentralGoogle Scholar
  11. 11.
    Rosenberg AR, Kroon L, Chen L et al (2015) Insurance status and risk of cancer mortality among adolescents and young adults. Cancer 121(8):1279PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108CrossRefGoogle Scholar
  13. 13.
    Kirwan A, Utratna M, O'Dwyer ME et al (2015) Glycosylation-based serum biomarkers for cancer diagnostics and prognostics. Biomed Res Int 2015:490531PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Huang G, Li S, Yang N et al (2017) Recent progress in circular RNAs in human cancers. Cancer Lett 404:8PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Xin Z, Ma Q, Ren S et al (2017) The understanding of circular RNAs as special triggers in carcinogenesis. Brief Funct Genomics 16(2):80PubMedPubMedCentralGoogle Scholar
  16. 16.
    Boutros PC (2015) The path to routine use of genomic biomarkers in the cancer clinic. Genome Res 25(10):1508–1513PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kalia M (2015) Biomarkers for personalized oncology: recent advances and future challenges. Metabolism 64(3 Suppl 1):S16–S21PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9(9):22–32PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9):721CrossRefGoogle Scholar
  20. 20.
    Rupaimoole R, Calin GA, Lopez-Berestein G et al (2016) miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov 6(3):235–246PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Leva GD, Garofalo M, Croce CM (2014) microRNAs in cancer. Annu Rev Pathol 9(1):287PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Li Y, Zheng Q, Bao C et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. Rna-a Publication of the Rna. Society 19(2):141–157Google Scholar
  26. 26.
    Schwanhäusser B, Busse D, Li N et al (2013) Corrigendum: global quantification of mammalian gene expression control. Nature 495(7439):126–127PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Szabo L, Morey R, Palpant NJ et al (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16(1):1–26CrossRefGoogle Scholar
  28. 28.
    Rybak-Wolf A, Stottmeister C, Glažar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870CrossRefPubMedGoogle Scholar
  29. 29.
    Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264CrossRefPubMedGoogle Scholar
  30. 30.
    Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with Pre-mRNA Splicing. Mol Cell 56(1):55–66PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Conn S, Pillman K, Toubia J et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Dudekula DB, Panda AC, Grammatikakis I et al (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13(1):34–42CrossRefGoogle Scholar
  33. 33.
    Howlader N, Noone AM, Krapcho M, et al (2012) Previous version: SEER cancer statistics review,1975–2009(Vintage 2009 Populations). National Cancer Institute. http://seer.cancer.gov/csr/1975_2009_pops09/
  34. 34.
    Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Institute NC (2015) Cancer of the pancreas – SEER stat fact sheets. http://seer.cancer.gov/statfacts/html
  36. 36.
    Maemondo M, Inoue A, Kobayashi K et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362(25):2380PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Wang BY, Huang JY, Cheng CY et al (2013) Lung cancer and prognosis in taiwan: a population-based cancer registry. J Thorac Oncol 8(9):1128–1135PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Luo YH, Zhu XZ, Huang KW et al (2017) Emerging roles of circular RNA hsa_circ_0000064 in the proliferation and metastasis of lung cancer. Biomed Pharmacother 96:892–898PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yao JT, Zhao SH, Liu QP et al (2017) Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value. Pathol Res Pract 213(5):453–456PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fang T, Yun W, Zhe X et al (2017) Circular RNA CircHIPK3 promotes NCI-H1299 and NCI-H2170 cell proliferation through miR-379 and its target IGF1. Chin J Lung Cancer 20(7):459Google Scholar
  41. 41.
    Zhu X, Wang X, Wei S et al (2017) hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J 284(14):2170PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zhao J, Li L, Wang Q et al (2017) CircRNA expression profile in early-stage lung adenocarcinoma patients. Cell Physiol Biochem 44(6):2138–2146PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73(18):5609PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Wan L, Zhang L, Fan K et al (2016) Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/β-Catenin pathway. Biomed Res Int 2016(1):1579490PubMedPubMedCentralGoogle Scholar
  45. 45.
    Tian F, Yu CT, Ye WD et al (2017) Cinnamaldehyde induces cell apoptosis mediated by a novel circular RNA hsa_circ_0043256 in non-small cell lung cancer. Biochem Biophys Res Commun 493(3):1260PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Aoyama T, Nishikawa K, Fujitani K et al (2016) Early results of a randomized two-by-two factorial phase II trial comparing neoadjuvant chemotherapy with two and four courses of cisplatin/S-1 and docetaxel/cisplatin/S-1 as neoadjuvant chemotherapy for locally advanced gastric cancer. Ann Oncol 28(8):1876–1881CrossRefGoogle Scholar
  47. 47.
    Chen W, Zheng R, Baade PD et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115CrossRefGoogle Scholar
  48. 48.
    Acebron SP, Niehrs C (2016) β-Catenin-independent roles of Wnt/LRP6 signaling. Trends Cell Biol 26(12):956–967PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Sui W, Shi Z, Xue W et al (2017) Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology. Oncol Rep 37(3):1804–1814PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Chen J (2017) 250P Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett 388:208–219PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Li P, Chen H, Chen S et al (2017) Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br J Cancer 116(5):626–633PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Peifei L, Shengcan C, Huilin C et al (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132CrossRefGoogle Scholar
  53. 53.
    Zhang Y, Li J, Yu J et al (2017) Circular RNAs signature predicts the early recurrence of stage III gastric cancer after radical surgery. Oncotarget 8(14):22936–22943PubMedPubMedCentralGoogle Scholar
  54. 54.
    Li WH, Song YC, Zhang H et al (2017) Decreased expression of Hsa_circ_00001649 in gastric cancer and its clinical significance. Dis Markers 2017:4587698PubMedPubMedCentralGoogle Scholar
  55. 55.
    Huang YS, Jie N, Zou KJ et al (2017) Expression profile of circular RNAs in human gastric cancer tissues. Mol Med Rep 16(3):2469–2476PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Shao Y, Li J, Lu R et al (2017) Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med 6(6):1173–1180PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Chen S, Li T, Zhao Q et al (2017) Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta 466:167–171PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bachmayrheyda A, Reiner AT, Auer K et al (2015) Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5(8057):8057CrossRefGoogle Scholar
  59. 59.
    Zhu M, Xu Y, Chen Y et al (2017) Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer. Biomed Pharmacother 88:138PubMedCrossRefGoogle Scholar
  60. 60.
    Guo J, Jin L, Zhu C et al (2016) Comprehensive profile of differentially expressed circular RNAs reveals that hsa_circ_0000069 is upregulated and promotes cell proliferation, migration, and invasion in colorectal cancer. Onco Targets Ther 9:7451–7458PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Xie H, Ren X, Xin S et al (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7(18):26680PubMedPubMedCentralGoogle Scholar
  62. 62.
    Hsiao KY, Lin YC, Gupta SK et al (2017) Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res 77(9):2339PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Huang G, Zhu H, Shi Y et al (2015) cir-ITCHPlays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway. PLoS One 10(6):e0131225PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Su H, Lin F, Xia D et al (2016) Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. J Transl Med 14(1):225PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Li F, Zhang L, Li W et al (2015) Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget 6(8):6001PubMedPubMedCentralGoogle Scholar
  66. 66.
    Xia W, Qiu M, Chen R et al (2016) Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation. Sci Rep 6:35576PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Qu S, Song W, Yang X et al (2015) Microarray expression profile of circular RNAs in human pancreatic ductal adenocarcinoma. Genomics Data 5(C):385PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Li H, Hao X, Wang H et al (2016) Circular RNA expression profile of pancreatic ductal adenocarcinoma revealed by microarray. Cell Physiol Biochem 40(6):1334PubMedCrossRefGoogle Scholar
  69. 69.
    Wang FS, Fan JG, Zhang Z et al (2014) The global burden of liver disease: the major impact of China. Hepatology 60(6):2099PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Nguyen VTT, Law MG, Dore GJ (2009) Hepatitis B-related hepatocellular carcinoma: epidemiological characteristics and disease burden. J Viral Hepat 16(7):453–463PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Zhang JY (2007) Mini-array of multiple tumor-associated antigens to enhance autoantibody detection for immunodiagnosis of hepatocellular carcinoma. Autoimmun Rev 6(3):143PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Samuel M, Chow PK, Chan SYE et al (2009) Neoadjuvant and adjuvant therapy for surgical resection of hepatocellular carcinoma. Cochrane Database Syst Rev 1(1):CD001199Google Scholar
  73. 73.
    Crissien AM, Frenette C (2014) Current management of hepatocellular carcinoma. Gastroenterol Hepatol 10(3):153Google Scholar
  74. 74.
    Qin M, Liu G, Huo X et al (2016) Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark 16(1):161–169CrossRefGoogle Scholar
  75. 75.
    Shang X, Li G, Liu H et al (2016) Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development. Medicine 95(22):e3811PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lei Y, Gong X, Lei S et al (2016) The circular RNA Cdr1as Act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One 11(7):e0158347CrossRefGoogle Scholar
  77. 77.
    Xu L, Zhang M, Zheng X et al (2017) The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol 143(1):1–11CrossRefGoogle Scholar
  78. 78.
    Huang XY, Huang ZL, Xu YH et al (2017) Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma. Sci Rep 7(1):5428PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ren S, Xin Z, Xu Y et al (2017) Construction and analysis of circular RNA molecular regulatory networks in liver cancer. Cell Cycle 16(22):2204–2211PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Guo W, Zhang J, Zhang D et al (2017) Polymorphisms and expression pattern of circular RNA circ-ITCH contributes to the carcinogenesis of hepatocellular carcinoma. Oncotarget 8(29):48169–48177PubMedPubMedCentralGoogle Scholar
  81. 81.
    Liu BH, Zhang BB, Liu XQ et al (2018) Expression profiling identifies circular RNA signature in hepatoblastoma. Cell Physiol Biochem 45(2):706PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Fu L, Chen Q, Yao T et al (2017) Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma. Oncotarget 8(27):43878–43888PubMedPubMedCentralGoogle Scholar
  83. 83.
    Fu L, Yao T, Chen Q et al (2017) Screening differential circular RNA expression profiles reveals hsa_circ_0004018 is associated with hepatocellular carcinoma. Oncotarget 8(35):58405–58416PubMedPubMedCentralGoogle Scholar
  84. 84.
    Center MM (2011) Global cancer statistics. CA Cancer J Clin 61(2):69PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Goto N, Hiyoshi H, Ito I et al (2014) Identification of a novel compound that suppresses breast cancer invasiveness by inhibiting transforming growth factor-β signaling via estrogen receptor α. J Cancer 5(5):336–343PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Grushko TA, Filiaci VL, Mundt AJ et al (2008) An exploratory analysis of HER-2 amplification and overexpression in advanced endometrial carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 108(1):3–9PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wang H, Mu X, Zhou S et al (2014) NEDD9 overexpression is associated with the progression of and an unfavorable prognosis in epithelial ovarian cancer. Hum Pathol 45(2):401–408PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Tangjitgamol S, Khunnarong J, Srijaipracharoen S (2014) Medical morbidities in endometrial cancer patients. Int J Gynecol Cancer 24(9):1623–1627PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Reddy SD, Ohshiro K, Rayala SK et al (2008) MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 68(20):8195PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Lü L, Jian S, Shi P et al (2017) Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget 8(27):44096–44107PubMedPubMedCentralGoogle Scholar
  91. 91.
    Liang HF, Zhang XZ, Liu BG et al (2017) Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res 7(7):1566–1576PubMedPubMedCentralGoogle Scholar
  92. 92.
    Liang G, Liu Z, Tan L et al (2017) HIF1α-associated circDENND4C promotes proliferation of breast cancer cells in hypoxic environment. Anticancer Res 37(8):4337–4343PubMedPubMedCentralGoogle Scholar
  93. 93.
    Wang H, Xiao Y, Wu L et al (2018) Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis. Int J Oncol 52(3):743–754PubMedPubMedCentralGoogle Scholar
  94. 94.
    Ahmed I, Karedath T, Andrews SS et al (2016) Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma. Oncotarget 7(24):36366–36381PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Chen BJ, Byrne FL, Takenaka K et al (2018) Analysis of the circular RNA transcriptome in endometrial cancer. Oncotarget 9(5):5786–5796PubMedPubMedCentralGoogle Scholar
  96. 96.
    Abdelmohsen K, Panda AC, Munk R et al (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14(3):361–369PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Xuan L, Qu L, Han Z et al (2016) Circular RNA: a novel biomarker for progressive laryngeal cancer. Am J Transl Res 8(2):932PubMedPubMedCentralGoogle Scholar
  98. 98.
    Chen L, Zhang S, Wu J et al (2017) circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene 36(32):4551–4561PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Zheng J, Liu X, Xue Y et al (2017) TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol 10(1):52PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Guarnerio J, Bezzi M, Jeong JC et al (2016) Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 165(2):289–302PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:30919PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sand M, Bechara FG, Sand D et al (2016) Circular RNA expression in basal cell carcinoma. Epigenomics 8(5):619–632PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Yang H, Luo J, Liu Z et al (2015) MicroRNA-138 regulates DNA damage response in small cell lung cancer cells by directly targeting H2AX. Cancer Investig 33(4):126CrossRefGoogle Scholar
  104. 104.
    Liu YC, Li JR, Sun CH et al (2016) CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res 44(D1):D209PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Peifei L, Shengcan C, Huilin C et al (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136CrossRefGoogle Scholar
  106. 106.
    Wang X, Zhang Y, Huang L et al (2015) Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol 8(12):16020–16025PubMedPubMedCentralGoogle Scholar
  107. 107.
    Huang G, Hua Z, Shi Y et al (2015) cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway. PLoS One 10(6):e0131225PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Mcglynn LM, Mccluney S, Jamieson NB et al (2015) SIRT3 & SIRT7: potential novel biomarkers for determining outcome in pancreatic cancer patients. PLoS One 10(6):e0131344PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Yeh YM, Chuang CM, Chao KC et al (2013) MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1α. Int J Cancer 133(4):867–878PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Yu SY, Wang YP, Chang JY et al (2014) Increased expression of MCM5 is significantly associated with aggressive progression anda poor prognosis of oral squamous cell carcinoma. J Oral Pathol Med 43(5):344–349PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Sand M, Bechara FG, Gambichler T et al (2016) Circular RNA expression in cutaneous squamous cell carcinoma. J Dermatol Sci 83(3):210–218PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Wang Q, Tang H, Yin S et al (2013) Downregulation of microRNA-138 enhances the proliferation, migration and invasion of cholangiocarcinoma cells through the upregulation of RhoC/p-ERK/MMP-2/MMP-9. Oncol Rep 29(5):2046–2052PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Jin H, Jin X, Zhang H et al (2017) Circular RNA hsa-circ-0016347 promotes proliferation, invasion and metastasis of osteosarcoma cells. Oncotarget 8(15):25571–25581PubMedPubMedCentralGoogle Scholar
  114. 114.
    Wang K, Sun Y, Tao W et al (2017) Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett 394:1–12PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Gastroenterology and HepatologyDigestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of MedicineShanghaiChina

Personalised recommendations