Advertisement

Circular RNAs pp 159-170 | Cite as

Circular RNAs as Novel Biomarkers for Cardiovascular Diseases

  • Qiulian Zhou
  • Zhongrong Zhang
  • Yihua Bei
  • Guoping Li
  • Tianhui WangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)

Abstract

Cardiovascular diseases are among the most serious diseases, which are a leading cause of death across the world. Early diagnosis and prognosis prediction are keys for treatment and reduction of death rates. Circular RNAs (circRNAs) play a critical role in the physiology and pathology of biological system and participate in the development of diseases. In addition, circRNAs are relative stable and abundant. Therefore, many studies have suggested that circRNAs could be used as biomarkers for diseases, such as neurological diseases, cancers, immune diseases, and digestive diseases. Here we summarize recent studies on circRNAs and compare the characteristics of circRNAs with traditional biomarkers. Finally, we highlight the value of circRNAs as potential biomarkers for cardiovascular diseases, including acute myocardial infarction, heart failure, coronary artery disease, and hypertension. In conclusion, circRNAs may be promising biomarkers for cardiovascular diseases.

Keywords

Circular RNA Biomarkers Cardiovascular diseases 

Notes

Acknowledgments

This work was supported by the grants from National Natural Science Foundation of China (81770401 to Y Bei) and National Key Research and Development Program of China (2017YFC1700401 to Y Bei).

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. 1.
    Han B, Chao J, Yao H (2018) Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther 187:31.  https://doi.org/10.1016/j.pharmthera.2018.01.010CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874CrossRefGoogle Scholar
  3. 3.
    Salzman J (2016) Circular RNA expression: its potential regulation and function. Trends Genet 32(5):309–316PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Nigro JM, Cho KR, Fearon ER et al (1991) Scrambled exons. Cell 64(3):607–613PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sanger HL, Klotz G, Riesner D et al (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73(11):3852–3856CrossRefGoogle Scholar
  6. 6.
    Tan WL, Lim BT, Anene-Nzelu CG et al (2017) A landscape of circular RNA expression in the human heart. Cardiovasc Res 113(3):298–309Google Scholar
  7. 7.
    Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chen I, Chen CY, Chuang TJ (2015) Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev RNA 6(5):563–579CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang Y, Zhang XO, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264CrossRefPubMedGoogle Scholar
  11. 11.
    Arita T, Ichikawa D, Konishi H et al (2013) Circulating long non-coding RNAs in plasma of patients with gastric cancer. Anticancer Res 33(8):3185–3193PubMedGoogle Scholar
  12. 12.
    Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006PubMedCrossRefGoogle Scholar
  13. 13.
    Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Maass PG, Glazar P, Memczak S et al (2017) A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl) 95(11):1179–1189CrossRefGoogle Scholar
  15. 15.
    Alhasan AA, Izuogu OG, Al-Balool HH et al (2016) Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood 127(9):e1–e11PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Panda AC, De S, Grammatikakis I et al (2017) High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res 45(12):e116PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Suzuki H, Zuo Y, Wang J et al (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34(8):e63PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bahn JH, Zhang Q, Li F et al (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61(1):221–230PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Preusser C, Hung LH, Schneider T et al (2018) Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles 7(1):1424473PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rybak-Wolf A, Stottmeister C, Glazar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885CrossRefPubMedGoogle Scholar
  22. 22.
    Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Salzman J, Chen RE, Olsen MN et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Werfel S, Nothjunge S, Schwarzmayr T et al (2016) Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 98:103–107CrossRefPubMedGoogle Scholar
  25. 25.
    Kulcheski FR, Christoff AP, Margis R (2016) Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 238:42–51CrossRefGoogle Scholar
  26. 26.
    Liu YC, Chiu YJ, Li JR et al (2018) Biclustering of transcriptome sequencing data reveals human tissue-specific circular RNAs. BMC Genomics 19(Suppl 1):958PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Khan MA, Reckman YJ, Aufiero S et al (2016) RBM20 regulates circular RNA production from the titin gene. Circ Res 119(9):996–1003PubMedGoogle Scholar
  28. 28.
    Wu HJ, Zhang CY, Zhang S et al (2016) Microarray expression profile of circular RNAs in heart tissue of mice with myocardial infarction-induced heart failure. Cell Physiol Biochem 39(1):205–216PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Dou Y, Cha DJ, Franklin JL et al (2016) Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep 6:37982PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Li Y, Zheng Q, Bao C et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981–984PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Thomas LF, Saetrom P (2014) Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics 30(16):2243–2246PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Abdelmohsen K, Panda AC, Munk R et al (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14(3):361–369PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Barbagallo D, Caponnetto A, Cirnigliaro M et al (2018) CircSMARCA5 inhibits migration of glioblastoma Multiforme cells by regulating a molecular Axis involving splicing factors SRSF1/SRSF3/PTB. Int J Mol Sci 19(2)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Shan K, Liu C, Liu BH et al (2017) Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 136(17):1629–1642PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zheng J, Liu X, Xue Y et al (2017) TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1beta/Derlin-1 pathway. J Hematol Oncol 10(1):52PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307PubMedPubMedCentralGoogle Scholar
  40. 40.
    You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610PubMedPubMedCentralGoogle Scholar
  41. 41.
    Tian F, Yu CT, Ye WD et al (2017) Cinnamaldehyde induces cell apoptosis mediated by a novel circular RNA hsa_circ_0043256 in non-small cell lung cancer. Biochem Biophys Res Commun 493(3):1260–1266PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Wang YH, Yu XH, Luo SS et al (2015) Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing. Immun Ageing 12:17PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gruner H, Cortes-Lopez M, Cooper DA et al (2016) CircRNA accumulation in the aging mouse brain. Sci Rep 6:38907PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sena CM, Pereira AM, Seica R (2013) Endothelial dysfunction – a major mediator of diabetic vascular disease. Biochim Biophys Acta 1832(12):2216–2231PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chen Y, Yuan B, Wu Z et al (2017) Microarray profiling of circular RNAs and the potential regulatory role of hsa_circ_0071410 in the activated human hepatic stellate cell induced by irradiation. Gene 629:35–42CrossRefGoogle Scholar
  46. 46.
    Zeng Y, Du WW, Wu Y et al (2017) A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 7(16):3842–3855PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Holdt LM, Stahringer A, Sass K et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611CrossRefPubMedGoogle Scholar
  49. 49.
    Geng HH, Li R, Su YM et al (2016) The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One 11(3):e0151753PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Meng S, Zhou H, Feng Z et al (2017) CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 16(1):94PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zhang S, Zeng X, Ding T et al (2018) Microarray profile of circular RNAs identifies hsa_circ_0014130 as a new circular RNA biomarker in non-small cell lung cancer. Sci Rep 8(1):2878PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Li W, Zhong C, Jiao J et al (2017) Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis. Int J Mol Sci 18(3)PubMedCentralCrossRefGoogle Scholar
  53. 53.
    Qin M, Liu G, Huo X et al (2016) Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark 16(1):161–169CrossRefGoogle Scholar
  54. 54.
    Ronaldson KJ (2017) Cardiovascular disease in clozapine-treated patients: evidence, mechanisms and management. CNS Drugs 31(9):777–795PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Heil B, Tang WH (2015) Biomarkers: their potential in the diagnosis and treatment of heart failure. Cleve Clin J Med 82(12 Suppl 2):S28–S35PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Calzetta L, Orlandi A, Page C et al (2016) Brain natriuretic peptide: much more than a biomarker. Int J Cardiol 221:1031–1038PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kondkar AA, Abu-Amero KK (2015) Utility of circulating microRNAs as clinical biomarkers for cardiovascular diseases. Biomed Res Int 2015:821823Google Scholar
  58. 58.
    Enroth S, Johansson A, Enroth SB et al (2014) Strong effects of genetic and lifestyle factors on biomarker variation and use of personalized cutoffs. Nat Commun 5:4684PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Mari-Alexandre J, Sanchez-Izquierdo D, Gilabert-Estelles J et al (2016) miRNAs regulation and its role as biomarkers in endometriosis. Int J Mol Sci 17(1)PubMedCentralCrossRefGoogle Scholar
  60. 60.
    Van Roosbroeck K, Pollet J, Calin GA (2013) miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn 13(2):183–204PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Yang Y, Yu T, Jiang S et al (2017) miRNAs as potential therapeutic targets and diagnostic biomarkers for cardiovascular disease with a particular focus on WO2010091204. Expert Opin Ther Pat 27(9):1021–1029PubMedCrossRefGoogle Scholar
  62. 62.
    Zhu H, Fan GC (2013) Whether circulating miRNAs or miRNA-carriers serve as biomarkers for acute myocardial infarction. J Biomark Drug Dev 1(1)Google Scholar
  63. 63.
    Wang F, Long G, Zhao C et al (2014) Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction. PLoS One 9(9):e105734PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Pleister A, Selemon H, Elton SM et al (2013) Circulating miRNAs: novel biomarkers of acute coronary syndrome? Biomark Med 7(2):287–305PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Rognoni A, Cavallino C, Lupi A et al (2014) Novel biomarkers in the diagnosis of acute coronary syndromes: the role of circulating miRNAs. Expert Rev Cardiovasc Ther 12(9):1119–1124PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ali Sheikh MS, Salma U, Zhang B et al (2016) Diagnostic, prognostic, and therapeutic value of circulating miRNAs in heart failure patients associated with oxidative stress. Oxidative Med Cell Longev 2016:5893064CrossRefGoogle Scholar
  67. 67.
    Luscher TF (2016) From heart failure to transplantation: genes, miRNAs, and biomarkers. Eur Heart J 37(33):2561–2563PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Yan H, Ma F, Zhang Y et al (2017) miRNAs as biomarkers for diagnosis of heart failure: a systematic review and meta-analysis. Medicine (Baltimore) 96(22):e6825CrossRefGoogle Scholar
  69. 69.
    Viereck J, Thum T (2017) Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 120(2):381–399CrossRefGoogle Scholar
  70. 70.
    Devaux Y, Creemers EE, Boon RA et al (2017) Circular RNAs in heart failure. Eur J Heart Fail 19(6):701–709PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Danan M, Schwartz S, Edelheit S et al (2012) Transcriptome-wide discovery of circular RNAs in archaea. Nucleic Acids Res 40(7):3131–3142PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M (2016) Cardiovascular disease in Europe 2016: an epidemiological update. Eur Heart J 37(42):3182–3183CrossRefGoogle Scholar
  74. 74.
    Benjamin EJ, Blaha MJ, Chiuve SE et al (2017) Heart disease and stroke Statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Haggart PC, Adam DJ, Ludman PF et al (2001) Comparison of cardiac troponin I and creatine kinase ratios in the detection of myocardial injury after aortic surgery. Br J Surg 88(9):1196–1200PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Shyu KG, Lin JL, Chen JJ et al (1996) Use of cardiac troponin T, creatine kinase and its isoform to monitor myocardial injury during radiofrequency ablation for supraventricular tachycardia. Cardiology 87(5):392–395PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wang Q, Michiue T, Ishikawa T et al (2011) Combined analyses of creatine kinase MB, cardiac troponin I and myoglobin in pericardial and cerebrospinal fluids to investigate myocardial and skeletal muscle injury in medicolegal autopsy cases. Leg Med (Tokyo) 13(5):226–232CrossRefGoogle Scholar
  78. 78.
    Heavens KR, Szivak TK, Hooper DR et al (2014) The effects of high intensity short rest resistance exercise on muscle damage markers in men and women. J Strength Cond Res 28(4):1041–1049PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Tulevski II, ten Wolde M, van Veldhuisen DJ et al (2007) Combined utility of brain natriuretic peptide and cardiac troponin T may improve rapid triage and risk stratification in normotensive patients with pulmonary embolism. Int J Cardiol 116(2):161–166PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Stelzle D, Shah ASV, Anand A et al (2018) High-sensitivity cardiac troponin I and risk of heart failure in patients with suspected acute coronary syndrome: a cohort study. Eur Heart J Qual Care Clin Outcomes 4(1):36–42PubMedCrossRefGoogle Scholar
  81. 81.
    Salgado-Somoza A, Zhang L, Vausort M et al (2017) The circular RNA MICRA for risk stratification after myocardial infarction. Int J Cardiol Heart Vasc 17:33–36PubMedPubMedCentralGoogle Scholar
  82. 82.
    Vausort M, Salgado-Somoza A, Zhang L et al (2016) Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. J Am Coll Cardiol 68(11):1247–1248PubMedCrossRefGoogle Scholar
  83. 83.
    Vausort M, Wagner DR, Devaux Y (2014) Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 115(7):668–677CrossRefPubMedGoogle Scholar
  84. 84.
    Kasner M, Sinning D, Lober J et al (2015) Heterogeneous responses of systolic and diastolic left ventricular function to exercise in patients with heart failure and preserved ejection fraction. ESC Heart Fail 2(3):121–132PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Rapezzi C, Milandri A, Lorenzini M (2017) The complex interplay between systolic and diastolic function at rest and during exercise in heart failure: the case of cardiac amyloidosis. Eur J Heart Fail 19(11):1466–1467PubMedCrossRefGoogle Scholar
  86. 86.
    Rommel KP, von Roeder M, Oberueck C et al (2018) Load-independent systolic and diastolic right ventricular function in heart failure with preserved ejection fraction as assessed by resting and handgrip exercise pressure-volume loops. Circ Heart Fail 11(2):e004121PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Beltran-Alvarez P, Tarradas A, Chiva C et al (2014) Identification of N-terminal protein acetylation and arginine methylation of the voltage-gated sodium channel in end-stage heart failure human heart. J Mol Cell Cardiol 76:126–129PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Szczurek W, Szygula-Jurkiewicz B, Zakliczynski M et al (2018) Prognostic utility of the N terminal prohormone of brain natriuretic peptide and the modified model for end stage liver disease in patients with end stage heart failure. Pol Arch Intern MedGoogle Scholar
  89. 89.
    Callender T, Rahimi K (2015) Heart failure and iron deficiency anaemia: a complex dance. Heart 101(8):579–580PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Choi KH, Lee GY, Choi JO et al (2018) Outcomes of de novo and acute decompensated heart failure patients according to ejection fraction. Heart 104(6):525–532PubMedCrossRefGoogle Scholar
  91. 91.
    Bayes-Genis A, Lanfear DE, de Ronde MWJ et al (2018) Prognostic value of circulating microRNAs on heart failure-related morbidity and mortality in two large diverse cohorts of general heart failure patients. Eur J Heart Fail 20(1):67–75PubMedCrossRefGoogle Scholar
  92. 92.
    Bhatt AS, Cooper LB, Ambrosy AP et al (2018) Interaction of body mass index on the association between N-terminal-pro-b-type natriuretic peptide and morbidity and mortality in patients with acute heart failure: findings from ASCEND-HF (acute study of clinical effectiveness of Nesiritide in decompensated heart failure). J Am Heart Assoc 7(3)Google Scholar
  93. 93.
    Moser DK, Robinson S, Biddle MJ et al (2015) Health literacy predicts morbidity and mortality in rural patients with heart failure. J Card Fail 21(8):612–618PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975PubMedCrossRefGoogle Scholar
  95. 95.
    Talwar S, Squire IB, Downie PF et al (2000) Profile of plasma N-terminal proBNP following acute myocardial infarction; correlation with left ventricular systolic dysfunction. Eur Heart J 21(18):1514–1521PubMedCrossRefGoogle Scholar
  96. 96.
    Lin X, Lo HC, Wong DT et al (2015) Noncoding RNAs in human saliva as potential disease biomarkers. Front Genet 6:175PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kumarswamy R, Bauters C, Volkmann I et al (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114(10):1569–1575PubMedCrossRefGoogle Scholar
  98. 98.
    Burd CE, Jeck WR, Liu Y et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Xuan L, Sun L, Zhang Y et al (2017) Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure. J Cell Mol Med 21(9):1803–1814PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Levine GN, Bates ER, Bittl JA et al (2016) 2016 ACC/AHA Guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention, 2011 ACCF/AHA guideline for coronary artery bypass graft surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease, 2013 ACCF/AHA guideline for the Management of ST-Elevation myocardial infarction, 2014 AHA/ACC guideline for the management of patients with Non-ST-elevation acute coronary syndromes, and 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery. Circulation 134(10):e123–e155PubMedCrossRefGoogle Scholar
  101. 101.
    McGrath BM, Norris CM, Hardwicke-Brown E et al (2017) Quality of life following coronary artery bypass graft surgery vs. percutaneous coronary intervention in diabetics with multivessel disease: a five-year registry study. Eur Heart J Qual Care Clin Outcomes 3(3):216–223PubMedGoogle Scholar
  102. 102.
    Zimmermann FM, De Bruyne B, Pijls NH, et al (2015) Rationale and design of the fractional flow reserve versus angiography for multivessel evaluation (FAME) 3 trial: a comparison of fractional flow reserve-guided percutaneous coronary intervention and coronary artery bypass graft surgery in patients with multivessel coronary artery disease. Am Heart J 170 (4):619–626 e612PubMedCrossRefGoogle Scholar
  103. 103.
    Bazan HA, Hatfield SA, Brug A et al (2017) Carotid plaque rupture is accompanied by an increase in the ratio of serum circR-284 to miR-221 levels. Circ Cardiovasc Genet 10(4):e001720PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sarkisian L, Saaby L, Poulsen TS, et al (2016) Clinical characteristics and outcomes of patients with myocardial infarction, myocardial injury, and nonelevated troponins. Am J Med 129(4):446 e445–446 e421PubMedCrossRefGoogle Scholar
  105. 105.
    Lee PH, Lee JY, Lee CW et al (2018) Comparison of a simple angiographic approach with a synergy between percutaneous coronary intervention with Taxus and cardiac surgery score-based approach for left main coronary artery stenting: a pooled analysis of serial PRECOMBAT (premier of randomized comparison of bypass surgery versus angioplasty using Sirolimus-eluting stent in patients with left main coronary artery disease) studies. Circ Cardiovasc Interv 11(1):e005374PubMedCrossRefGoogle Scholar
  106. 106.
    Bazan HA, Hatfield SA, O'Malley CB et al (2015) Acute loss of miR-221 and miR-222 in the atherosclerotic plaque shoulder accompanies plaque rupture. Stroke 46(11):3285–3287PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Li X, Zhao Z, Jian D et al (2017) Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus. Diab Vasc Dis Res 14(6):510–515PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Zhao Z, Li X, Gao C et al (2017) Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 7:39918PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hamamura K, Yanagida M, Ishikawa H et al (2018) Quantitative measurement of a candidate serum biomarker peptide derived from alpha2-HS-glycoprotein, and a preliminary trial of multidimensional peptide analysis in females with pregnancy-induced hypertension. Ann Clin Biochem 55(2):287–295PubMedCrossRefGoogle Scholar
  110. 110.
    Richter MJ, Schermuly R, Seeger W et al (2016) Relevance of angiopoietin-2 and soluble P-selectin levels in patients with pulmonary arterial hypertension receiving combination therapy with oral treprostinil: a FREEDOM-C2 biomarker substudy. Pulm Circ 6(4):516–523PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Smukowska-Gorynia A, Tomaszewska I, Malaczynska-Rajpold K et al (2017) Red blood cells distribution width as a potential prognostic biomarker in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Heart Lung Circ doi 27:842.  https://doi.org/10.1016/j.hlc.2017.08.007CrossRefGoogle Scholar
  112. 112.
    Wu N, Jin L, Cai J (2017) Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens 39(5):454–459PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Boeckel JN, Jae N, Heumuller AW et al (2015) Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res 117(10):884–890PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Ghofrani HA, Simonneau G, D'Armini AM et al (2017) Macitentan for the treatment of inoperable chronic thromboembolic pulmonary hypertension (MERIT-1): results from the multicentre, phase 2, randomised, double-blind, placebo-controlled study. Lancet Respir Med 5(10):785–794PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Hoeper MM, Madani MM, Nakanishi N et al (2014) Chronic thromboembolic pulmonary hypertension. Lancet Respir Med 2(7):573–582PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Miwa H, Tanabe N, Jujo T et al (2018) Long-term outcome of chronic thromboembolic pulmonary hypertension at a single Japanese pulmonary endarterectomy center. Circ J 82(5):1428–1436PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Ghofrani HA, D'Armini AM, Grimminger F et al (2013) Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med 369(4):319–329PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Sulica R, Fenton R, Cefali F (2015) Early observations on the use of Riociguat in a large, metropolitan pulmonary arterial hypertension/chronic thromboembolic pulmonary hypertension treatment center. Cardiol Ther 4(2):209–218PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Miao R, Wang Y, Wan J et al (2017) Microarray expression profile of circular RNAs in chronic thromboembolic pulmonary hypertension. Medicine (Baltimore) 96(27):e7354CrossRefGoogle Scholar
  120. 120.
    Kamath-Rayne BD, Saal H, Lang S et al (2013) Recurrent severe oligohydramnios and fetal pulmonary hypoplasia associated with ErbB4 mutation. Obstet Gynecol 121(2 Pt 2 Suppl 1):499–501PubMedGoogle Scholar
  121. 121.
    Kao DP, Stevens LM, Hinterberg MA et al (2017) Phenotype-specific Association of Single-Nucleotide Polymorphisms with heart failure and preserved ejection fraction: a genome-wide association analysis of the cardiovascular health study. J Cardiovasc Transl Res 10(3):285–294PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Mitchell BD, McArdle PF, Shen H et al (2008) The genetic response to short-term interventions affecting cardiovascular function: rationale and design of the heredity and phenotype intervention (HAPI) heart study. Am Heart J 155(5):823–828PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Gorlach A, Holdenrieder S (2017) Circular RNA maps paving the road to biomarker development? J Mol Med (Berl) 95(11):1137–1141CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Qiulian Zhou
    • 1
    • 2
    • 3
  • Zhongrong Zhang
    • 2
    • 3
  • Yihua Bei
    • 2
    • 3
  • Guoping Li
    • 4
  • Tianhui Wang
    • 2
    • 3
    Email author
  1. 1.Shanghai Applied Radiation Institute, School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  2. 2.Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life ScienceShanghai UniversityShanghaiChina
  3. 3.Shanghai Key Laboratory of Bio-Energy CropsSchool of Life SciencesShanghai UniversityChina
  4. 4.Cardiovascular Division of the Massachusetts General HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations