Advertisement

Circular RNAs pp 141-157 | Cite as

Emerging Role of Circular RNAs as Potential Biomarkers for the Diagnosis of Human Diseases

  • Rupal Ojha
  • Raj Nandani
  • Nina Chatterjee
  • Vijay Kumar PrajapatiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)

Abstract

In the eukaryotic transcriptome, the evolutionary conserved circular RNAs naturally occur from the family of noncoding RNAs. Circular RNAs possess a unique feature to interact with nucleic acids and ribonucleoproteins and are establishing themselves as an obligatory composition for the regulatory messages which are encoded by the genome. The back-splicing mechanism leads to the formation of circularized RNA, and because of this they become resistant to exonuclease-mediated degradation. The differential and aberrant expression of circular RNAs can be detected with the help of various profiling methods by using serum, plasma, and tissue samples. In this chapter, we have highlighted the role of circular RNAs as putative biomarker for the detection of various human diseases along with its profiling methods. Here we have discussed the differentially expressed circular RNAs in neurological disorders and infectious diseases along with cancer diseases. For instance, in case of pulmonary tuberculosis, hsa_circRNA_001937 was upregulated, while hsa_circRNA_102101 got downregulated; Hsa_circ_000178 was depicted to get upregulated in breast cancer which is associated with disease progression. Furthermore, it has been observed that circRNAs are abundantly present within the mammalian brain tissues. In epileptic condition, Circ-EFCAB2 was observed to get notably upregulated within patients. Taking the above conditions into consideration, circular RNAs have proven themselves as promising noninvasive biomarker for the detection of human diseases.

Keywords

Circular RNA Biomarker Diagnosis Human diseases 

Notes

Acknowledgments

RO is thankful to the Central University of Rajasthan for providing UGC fellowship.

Disclosure Statement

No potential conflict of interest was reported by authors.

References

  1. 1.
    Zhi-Chun Z, Xiao-Long G, Li X (2017) The novel roles of circular RNAs in metabolic organs. Genes Dis 5(1):16–23Google Scholar
  2. 2.
    Chen Y, Li C, Tan C et al (2016) Circular RNAs: a new frontier in the study of human diseases. J Med Genet 53(6):359–365CrossRefGoogle Scholar
  3. 3.
    Memczak S, Papavasileiou P, Peters O et al (2015) Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One 10(10):e0141214CrossRefGoogle Scholar
  4. 4.
    Carriero S, Damha MJ (2003) Template-mediated synthesis of lariat RNA and DNA. J Org Chem 68(22):8328–8338CrossRefGoogle Scholar
  5. 5.
    Li J, Yang J, Zhou P et al (2015) Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am J Cancer Res 5(2):472PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lasda E, Parker R (2016) Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PLoS One 11(2):e0148407CrossRefGoogle Scholar
  7. 7.
    Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453CrossRefGoogle Scholar
  8. 8.
    Li WH, Song YC, Zhang H (2017) Decreased expression of Hsa_circ_00001649 in gastric cancer and its clinical significance. Dis Markers 2017:4587698PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16(11):2043–2050CrossRefGoogle Scholar
  10. 10.
    Rybak-Wolf A, Stottmeister C, Glažar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885CrossRefGoogle Scholar
  11. 11.
    Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838–1847CrossRefGoogle Scholar
  12. 12.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333CrossRefGoogle Scholar
  13. 13.
    Jost I, Shalamova LA, Gerresheim GK et al (2018) Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges. RNA Biol 28:1–8CrossRefGoogle Scholar
  14. 14.
    Panda AC, De S, Grammatikakis I et al (2017) High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res 45(12):e116–e116CrossRefGoogle Scholar
  15. 15.
    Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55(4):641–658CrossRefGoogle Scholar
  16. 16.
    Chen L, Yu Y, Zhang X et al (2016) PcircRNA_finder: a software for circRNA prediction in plants. Bioinformatics 32(22):3528–3529PubMedPubMedCentralGoogle Scholar
  17. 17.
    World Health Organization (2016) Global tuberculosis report 2016. World Health Organization, GenevaGoogle Scholar
  18. 18.
    Lü L, Sun J, Shi P et al (2017) Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget 8(27):44096PubMedPubMedCentralGoogle Scholar
  19. 19.
    Du WW, Fang L, Yang W et al (2017) Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 24(2):357CrossRefGoogle Scholar
  20. 20.
    Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858CrossRefGoogle Scholar
  21. 21.
    Bachmayr-Heyda A, Reiner AT, Auer K et al (2015) Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5:8057CrossRefGoogle Scholar
  22. 22.
    Qian Z, Liu H, Li M et al (2018) Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. EBioMedicine 27:18–26CrossRefGoogle Scholar
  23. 23.
    Huang Z-K, Yao F-Y, Xu J-Q et al (2018) Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from active tuberculosis patients. Cell Physiol Biochem 45(3):1230–1240CrossRefGoogle Scholar
  24. 24.
    Zhu RX, Seto W-K, Lai C-L et al (2016) Epidemiology of hepatocellular carcinoma in the Asia-Pacific region. Gut Liver 10(3):332–339CrossRefGoogle Scholar
  25. 25.
    Beasley RP (1988) Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer 61(10):1942–1956CrossRefGoogle Scholar
  26. 26.
    Custer B, Sullivan SD, Hazlet TK et al (2004) Global epidemiology of hepatitis B virus. J Clin Gastroenterol 38(10):S158–S168CrossRefGoogle Scholar
  27. 27.
    Yu L, Gong X, Sun L et al (2016) The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One 11(7):e0158347CrossRefGoogle Scholar
  28. 28.
    Fu L, Yao T, Chen Q et al (2017) Screening differential circular RNA expression profiles reveals hsa_circ_0004018 is associated with hepatocellular carcinoma. Oncotarget 8(35):58405PubMedPubMedCentralGoogle Scholar
  29. 29.
    McKillop IH, Moran DM, Jin X et al (2006) Molecular pathogenesis of hepatocellular carcinoma. J Surg Res 136(1):125–135CrossRefGoogle Scholar
  30. 30.
    Wu K, House L, Liu W et al (2012) Personalized targeted therapy for lung cancer. Int J Mol Sci 13(9):11471–11496CrossRefGoogle Scholar
  31. 31.
    Ma PC (2012) Personalized targeted therapy in advanced non-small cell lung cancer. Cleve Clin J Med 79:eS56–eS60CrossRefGoogle Scholar
  32. 32.
    Zhang S, Zeng X, Ding T et al (2018) Microarray profile of circular RNAs identifies hsa_circ_0014130 as a new circular RNA biomarker in non-small cell lung cancer. Sci Rep 8(1):2878CrossRefGoogle Scholar
  33. 33.
    Wan L, Zhang L, Fan K et al (2016) Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/β-catenin pathway. Biomed Res Int 2016(1):1579490PubMedPubMedCentralGoogle Scholar
  34. 34.
    Yao J-T, Zhao S-H, Liu Q-P et al (2017) Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value. Pathol Res Pract 213(5):453–456CrossRefGoogle Scholar
  35. 35.
    Luo Y-H, Zhu X-Z, Huang K-W et al (2017) Emerging roles of circular RNA hsa_circ_0000064 in the proliferation and metastasis of lung cancer. Biomed Pharmacother 96:892–898CrossRefGoogle Scholar
  36. 36.
    Zhu X, Wang X, Wei S et al (2017) hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J 284(14):2170–2182CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Zhao H, Zhang L (2018) Identification of the tumor-suppressive function of circular RNA FOXO3 in non-small cell lung cancer through sponging miR-155. Mol Med Rep 17(6):7692–7700PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ji W, Qiu C, Wang M et al (2018) Hsa_circ_0001649: a circular RNA and potential novel biomarker for colorectal cancer. Biochem Biophys Res Commun 497(1):122–126CrossRefGoogle Scholar
  39. 39.
    Yin WB, Yan MG, Fang X, et al (2017) Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta.  https://doi.org/10.1016/j.cca.2017.10.011
  40. 40.
    Cocquerelle C, Mascrez B, Hetuin D et al (1993) Mis-splicing yields circular RNA molecules. FASEB J 7(1):155–160CrossRefGoogle Scholar
  41. 41.
    Siegel RL, Sahar L, Portier KM et al (2015) Cancer death rates in US congressional districts. CA Cancer J Clin 65(5):339–344CrossRefGoogle Scholar
  42. 42.
    Boleij A, van Gelder MM, Swinkels DW et al (2011) Clinical importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clin Infect Dis 53(9):870–878CrossRefGoogle Scholar
  43. 43.
    Xie H, Ren X, Xin S et al (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7(18):26680PubMedPubMedCentralGoogle Scholar
  44. 44.
    Weng W, Wei Q, Toden S et al (2017) Circular RNA ciRS-7—a promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res 23(14):3918–3928CrossRefGoogle Scholar
  45. 45.
    Wang X, Zhang Y, Huang L et al (2015) Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol 8(12):16020PubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhang P, Zuo Z, Shang W et al (2017) Identification of differentially expressed circular RNAs in human colorectal cancer. Tumor Biol 39(3):1010428317694546Google Scholar
  47. 47.
    Zhang Y, Zhang Y, Li X et al (2017) Microarray analysis of circular RNA expression patterns in polarized macrophages. Int J Mol Med 39(2):373–379CrossRefGoogle Scholar
  48. 48.
    Huang G, Zhu H, Shi Y et al (2015) cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/β-catenin pathway. PLoS One 10(6):e0131225CrossRefGoogle Scholar
  49. 49.
    Huang J-L, Qin M-C, Zhou Y et al (2018) Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model. Aging (Albany NY) 10(2):253Google Scholar
  50. 50.
    Mo D (2018) The role of Aβ circRNA in Alzheimer’s disease. bioRxiv:260968Google Scholar
  51. 51.
    Burmistrova O, Goltsov A, Abramova L et al (2007) MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochem Mosc 72(5):578–582CrossRefGoogle Scholar
  52. 52.
    Cogswell JP, Ward J, Taylor IA et al (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14(1):27–41CrossRefGoogle Scholar
  53. 53.
    Chen L-L, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388CrossRefGoogle Scholar
  54. 54.
    You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603CrossRefGoogle Scholar
  55. 55.
    Li J, Lin H, Sun Z et al (2018) High-throughput data of circular RNA profiles in human temporal cortex tissue reveals novel insights into temporal lobe epilepsy. Cell Physiol Biochem 45(2):677–691CrossRefGoogle Scholar
  56. 56.
    Zhao M, Gao F, Zhang D et al (2017) Altered expression of circular RNAs in Moyamoya disease. J Neurol Sci 381:25–31CrossRefGoogle Scholar
  57. 57.
    Wilusz JE, Sharp PA (2013) A circuitous route to noncoding RNA. Science 340(6131):440–441CrossRefGoogle Scholar
  58. 58.
    Lin S-P, Ye S, Long Y et al (2016) Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun 471(1):52–56CrossRefGoogle Scholar
  59. 59.
    Bensimon G, Ludolph A, Agid Y et al (2008) Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 132(1):156–171CrossRefGoogle Scholar
  60. 60.
    Prusiner SB, Woerman AL, Mordes DA et al (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A 112(38):E5308–E5317CrossRefGoogle Scholar
  61. 61.
    McCann H, Stevens CH, Cartwright H et al (2014) α-Synucleinopathy phenotypes. Parkinsonism Relat Disord 20:S62–S67CrossRefGoogle Scholar
  62. 62.
    Enuka Y, Lauriola M, Feldman ME et al (2015) Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 44(3):1370–1383CrossRefGoogle Scholar
  63. 63.
    Chen BJ, Mills JD, Takenaka K et al (2016) Characterization of circular RNAs landscape in multiple system atrophy brain. J Neurochem 139(3):485–496CrossRefGoogle Scholar
  64. 64.
    Li Y, Zheng Q, Bao C et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981CrossRefGoogle Scholar
  65. 65.
    Selvaggi L, Loverro G, Schena F et al (1988) Long term follow-up of women with hypertension in pregnancy. Int J Gynaecol Obstet 27(1):45–49CrossRefGoogle Scholar
  66. 66.
    Díaz LM, Díaz MPN, Serrano ND et al (2011) The prognosis for children of mothers with preeclampsia. Part 2: long-term effects. Arch Argent Pediatr 109(6):519–524CrossRefGoogle Scholar
  67. 67.
    Ji L, Brkić J, Liu M et al (2013) Placental trophoblast cell differentiation: physiological regulation and pathological relevance to preeclampsia. Mol Asp Med 34(5):981–1023CrossRefGoogle Scholar
  68. 68.
    Burd CE, Jeck WR, Liu Y et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rupal Ojha
    • 1
  • Raj Nandani
    • 1
  • Nina Chatterjee
    • 1
  • Vijay Kumar Prajapati
    • 1
    Email author
  1. 1.Department of Biochemistry, School of Life SciencesCentral University of RajasthanBandarsindri, AjmerIndia

Personalised recommendations