Advertisement

An Overview of Circular RNAs

  • Rajendra Awasthi
  • Anurag Kumar Singh
  • Gaurav Mishra
  • Anand Maurya
  • Dinesh Kumar Chellappan
  • Gaurav Gupta
  • Philip Michael Hansbro
  • Kamal Dua
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)

Abstract

Circular RNAs (cirRNAs) are long, noncoding endogenous RNA molecules and covalently closed continuous loop without 5′–3′ polarity and polyadenylated tail which are largely concentrated in the nucleus. CirRNA regulates gene expression by modulating microRNAs and functions as potential biomarker. CirRNAs can translate in vivo to link between their expression and disease. They are resistant to RNA exonuclease and can convert to the linear RNA by microRNA which can then act as competitor to endogenous RNA. This chapter summarizes the evolutionary conservation and expression of cirRNAs, their identification, highlighting various computational approaches on cirRNA, and translation with a focus on the breakthroughs and the challenges in this new field.

Keywords

cirRNA Circular RNAs Gene expression Translation 

References

  1. 1.
    Liu L, Wang J, Khanabdali R et al (2017) Circular RNAs: isolation, characterization and their potential role in diseases. RNA Biol 14(12):1715–1721CrossRefGoogle Scholar
  2. 2.
    Li J, Yang J, Zhou P, et al (2015a) Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am J Cancer Res 5(2):472Google Scholar
  3. 3.
    Li P, Chen S, Chen H et al (2015b) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136CrossRefGoogle Scholar
  4. 4.
    Greene J, Baird AM, Brady L et al (2017) Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci 4:38CrossRefGoogle Scholar
  5. 5.
    Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in cancer. Cancer Res 73(18):5609–5612CrossRefGoogle Scholar
  6. 6.
    Bachmayr-Heyda A, Reiner AT, Auer K et al (2015) Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5:8057CrossRefGoogle Scholar
  7. 7.
    Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838–1847CrossRefGoogle Scholar
  8. 8.
    Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20(12):1829–1842CrossRefGoogle Scholar
  9. 9.
    Chen I, Chen CY, Chuang TJ (2015) Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev RNA 6(5):563–579CrossRefGoogle Scholar
  10. 10.
    Bahn JH, Zhang Q, Li F et al (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61(1):221–230CrossRefGoogle Scholar
  11. 11.
    Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16(1):4CrossRefGoogle Scholar
  12. 12.
    Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453CrossRefGoogle Scholar
  13. 13.
    Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157CrossRefGoogle Scholar
  14. 14.
    Xiong HY, Alipanahi B, Lee LJ et al (2015) The human splicing code reveals new insights into the genetic determinants of disease. Science 347(6218):1254806CrossRefGoogle Scholar
  15. 15.
    Hansen TB (2018) Characterization of circular RNA concatemers. In: Circular RNAs. Humana Press, New York, pp 143–157CrossRefGoogle Scholar
  16. 16.
    Hansen TB, Wiklund ED, Bramsen JB (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30(21):4414–4422CrossRefGoogle Scholar
  17. 17.
    Gingeras TR (2009) Implications of chimaeric non-co-linear transcripts. Nature 461(7261):206CrossRefGoogle Scholar
  18. 18.
    Itzkovitz S, Van Oudenaarden A (2011) Validating transcripts with probes and imaging technology. Nature Methods 8(4s):S12CrossRefGoogle Scholar
  19. 19.
    Günzl A, Palfi Z, Bindereif A (2002) Analysis of RNA–protein complexes by oligonucleotide-targeted RNase H digestion. Methods 26(2):162–169CrossRefGoogle Scholar
  20. 20.
    Tabak HF, Van der Horst G, Smit J (1988) Discrimination between RNA circles, interlocked RNA circles and lariats using two-dimensional polyacrylamide gel electrophoresis. Nucleic Acids Res 16(14):6597–6605CrossRefGoogle Scholar
  21. 21.
    Wang PL, Bao Y, Yee MC et al (2014) Circular RNA is expressed across the eukaryotic tree of life. PloS one 9(3):e90859CrossRefGoogle Scholar
  22. 22.
    You X, Vlatkovic I, Babic A (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603CrossRefGoogle Scholar
  23. 23.
    Barrett SP, Wang PL, Salzman J (2015) Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4Google Scholar
  24. 24.
    Jakobi T, Dieterich C (2018) Deep computational circular RNA analytics from RNA-seq data. Methods Mol Biol 1724:9–25CrossRefGoogle Scholar
  25. 25.
    Reznichenko A (2012) Translational renal genetics. University Library Groningen Host. Humana Press, New YorkGoogle Scholar
  26. 26.
    Shapiro BA, Yingling YG, Kasprzak W et al (2007) Bridging the gap in RNA structure prediction. Curr Opin Struct Biol 17(2):157–165CrossRefGoogle Scholar
  27. 27.
    Ebbesen KK, Kjems J, Hansen TB (2016) Circular RNAs: identification, biogenesis and function. Biochim Biophys Acta 1859:163–168CrossRefGoogle Scholar
  28. 28.
    Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388CrossRefGoogle Scholar
  29. 29.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338CrossRefGoogle Scholar
  30. 30.
    Zheng Q, Bao C, Guo W et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215CrossRefGoogle Scholar
  31. 31.
    Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66CrossRefGoogle Scholar
  32. 32.
    Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–2858CrossRefGoogle Scholar
  33. 33.
    Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16(1):4CrossRefGoogle Scholar
  34. 34.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333CrossRefGoogle Scholar
  35. 35.
    Salzman J, Chen RE, Olsen MN et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777CrossRefGoogle Scholar
  36. 36.
    Lasda E, Parker R (2014) CircularRNAs: diversity of form and function. RNA 20:1829–1842CrossRefGoogle Scholar
  37. 37.
    Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256CrossRefGoogle Scholar
  38. 38.
    Conn SJ, Pillman KA, Toubia J (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 1(6):1125–1134CrossRefGoogle Scholar
  39. 39.
    Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384CrossRefGoogle Scholar
  40. 40.
    Gao Y, Zhao F (2018) Computational strategies for exploring circular RNAs. Trends Genet 34(5):389–400CrossRefGoogle Scholar
  41. 41.
    Zhang XO, Wang HB, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147CrossRefGoogle Scholar
  42. 42.
    Szabo L, Morey R, Palpant NJ et al (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16(1):126CrossRefGoogle Scholar
  43. 43.
    Glažar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670CrossRefGoogle Scholar
  44. 44.
    Meng X, Chen Q, Zhang P et al (2017) CircPro: anintegrated tool for the identification of circRNAs with protein-coding potential. Bioinformatics 33:3314–3316CrossRefGoogle Scholar
  45. 45.
    Memczak S, Jens M, Elefsinioti A (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333CrossRefGoogle Scholar
  46. 46.
    Zhang XO, Wang HB, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147CrossRefGoogle Scholar
  47. 47.
    Gao Y, Zhang J, Zhao F (2017) Circular RNA identification based on multiple seed matching. Brief Bioinform.  https://doi.org/10.1093/bib/bbx014
  48. 48.
    Song X, Zhang N, Han P et al (2016) Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res 44(9):e87–e87CrossRefGoogle Scholar
  49. 49.
    Chuang TJ, Wu CS, Chen CY et al (2015) NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic Acids Res 44(3):e29–e29CrossRefGoogle Scholar
  50. 50.
    Szabo L, Morey R, Palpant NJ et al (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16(1):126CrossRefGoogle Scholar
  51. 51.
    Baruzzo G, Hayer KE, Kim EJ et al (2017) Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat Methods 14(2):135CrossRefGoogle Scholar
  52. 52.
    Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21CrossRefGoogle Scholar
  53. 53.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111CrossRefGoogle Scholar
  54. 54.
    Cheng J, Metge F, Dieterich C (2015) Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32(7):1094–1096CrossRefGoogle Scholar
  55. 55.
    Jackson RJ (2013) The current status of vertebrate cellular mRNA IRESs. Cold Spring Harb Perspect Biol 5:a011569CrossRefGoogle Scholar
  56. 56.
    Yang Y, Fan X, Mao M (2017) Extensive translation of circular RNAs driven by N-6-methyladenosine. Cell Res 27:626–641CrossRefGoogle Scholar
  57. 57.
    Wang Y, Wang Z (2015) Efficient backsplicing produces translatable circular mRNAs, RNA-Publ. RNA Soc 21:172–179CrossRefGoogle Scholar
  58. 58.
    Chen CY, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268:415–417CrossRefGoogle Scholar
  59. 59.
    Abe N, Matsumoto K, Nishihara M (2015) Rolling circle translation of circular RNA in living human cells. Sci Rep 5:16435CrossRefGoogle Scholar
  60. 60.
    Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15:409CrossRefGoogle Scholar
  61. 61.
    Aitken CE, Lorsch JR (2012) A mechanistic overview of translation initiation in eukaryotes. Nat Struct Mol Biol 19:568–576CrossRefGoogle Scholar
  62. 62.
    Pamudurti NR, Bartok O, Jens M et al (2017) Translation of CircRNAs. Mol Cell 66:9–21CrossRefGoogle Scholar
  63. 63.
    Legnini I, Di Timoteo G, Rossi F et al (2017) CircZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66:22–37CrossRefGoogle Scholar
  64. 64.
    Dominissini D, Moshitch-Moshkovitz S, Schwartz S (2012) Topology of the human and mouse m(6)A RNA methylomes revealed by m(6)A-seq. Nature 485:201–284CrossRefGoogle Scholar
  65. 65.
    Meyer KD, SaletoreY ZP et al (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149:1635–1646CrossRefGoogle Scholar
  66. 66.
    Meyer KD, PatilDP ZJ et al (2015) 5′ UTR m(6)A promotes cap-independent translation. Cell 163:999–1010CrossRefGoogle Scholar
  67. 67.
    Fu Y, Dominissini D, Rechavi G (2014) Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet 15:293–306CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rajendra Awasthi
    • 1
  • Anurag Kumar Singh
    • 2
  • Gaurav Mishra
    • 3
  • Anand Maurya
    • 3
  • Dinesh Kumar Chellappan
    • 4
  • Gaurav Gupta
    • 5
  • Philip Michael Hansbro
    • 6
    • 7
  • Kamal Dua
    • 6
    • 7
  1. 1.Amity Institute of PharmacyAmity UniversityNoidaIndia
  2. 2.Centre of Experimental Medicine & Surgery, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
  3. 3.NKBR College of Pharmacy and Research CentreMeerutIndia
  4. 4.Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
  5. 5.School of Pharmaceutical SciencesJaipur National UniversityJaipurIndia
  6. 6.School of Biomedical Sciences and PharmacyUniversity of Newcastle, Hunter Medical Research InstituteNewcastleAustralia
  7. 7.Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia

Personalised recommendations