Skip to main content

Optimization of the Temperature Effects on Structure InAs/GaAs QDSC

  • Conference paper
  • First Online:
Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy (ICEERE 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 519))

  • 1442 Accesses

Abstract

In this work, we are interested in modeling and simulation of InAs/GaAs quantum dots solar cell, two parameters were investigated the number of quantum dots embedded in the solar cell and the thermal effect on their parameter characteristics. First we have studied the effect of number of quantum dot layers inserted; the insertion of 40 quantum dot layers gives better results. To validate our results we have made a comparison with experimental works, and then we have studied the effect of temperature on the parameter characteristics of InAs/GaAs solar cell with 40 quantum dot layers. Like all other semiconductor devices solar cells are sensitive to temperature the most parameter affected by the temperature rising is the open circuit voltage. The increase of temperature from 250 K to 400 K leads to the decrease of Voc from 1.3 to 0.72 V and, in turn, the conversion efficiency from 24.78% to 16.18%, however the Jsc increases slightly from 24.44 Am/cm2 for 250 K to 34.57 Am/cm2 for 400 K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoshida K, Okada Y, Sano N (2012) Device simulation of intermediate band solar cells: effects of doping and concentration. J Appl Phys 112:084510

    Article  Google Scholar 

  2. Luque A, Marti A (2010) The intermediate band solar cell: progress toward the realization of an attractive concept. Adv Mater 22(2):160–174

    Article  Google Scholar 

  3. Tutu FK, Sellers IR, Peinado MG, Pastore CE, Willis SM, Watt AR, Wang T, Liu HY (2012) Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer on electricity and magnetism. J Appl Phys 111(4):046101

    Article  Google Scholar 

  4. Hsu WT, Liao YA, Lu SK, Cheng SJ, Chiu PC, Chyi JI, Cheng WH (2010) Tailoring of the wave function overlaps and the carrier lifetimes in InAs/GaAs1−xSbx type-II quantum dots. Physica E 42(10):2524–2528

    Article  Google Scholar 

  5. Hatch S, Wu J, Sablon K, Lam P, Tang M, Jiang Q, Liu H (2014) InAs/GaAsSb quantum dot solar cells. Opt Express 22(S3):A679

    Article  Google Scholar 

  6. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Band parameters for III-V compound semiconductors and their alloys. J Appl Phys 89(11):5815–5875

    Article  Google Scholar 

  7. Skoplaki E, Palyvos JA (2009) Operating temperature of photovoltaic modules: a survey of pertinent correlations. Renew Energy 34:23–29

    Article  Google Scholar 

  8. Landis G, Rafaelle R, Merritt D (2004) High temperature solar cell development. In: 19th European photovoltaic science and engineering conference, Paris, France, pp 7–11

    Google Scholar 

  9. Lam P, Wu J, Tang M, Jiang Q, Hatch S, Beanland R, Wilson J, Allison R, Liu H (2014) Submonolayer InGaAs/GaAs quantum dot solar cells. Solar Energy Mater Solar Cells 126:83–87

    Article  Google Scholar 

  10. Pinto MR, Rafferty CS, Dutton RW (1984) PISCES2 - Poisson and continuity equation solver, Stanford Electronics Laboratory Technical Report, Stanford University, September 1984

    Google Scholar 

  11. Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, Wien

    Book  Google Scholar 

  12. Jonsson B, Eng ST (1990) Solving the Schrodinger equation in arbitrary quantum-well potential profiles using the transfer matrix method. IEEE J Quantum Electron 26:2025–2035

    Article  Google Scholar 

  13. Ramey SM, Khoie R (2003) Modeling of multiple-quantum-well solar cells including capture, escape and recombination of photo excited carriers in quantum wells. IEEE Trans Electron Devices 50(5):1179–1188

    Article  Google Scholar 

  14. Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34(1):149–154

    Article  Google Scholar 

  15. Mustapha BU, Dikwa MKM, Abbagana M (2012) Electrical parameters estimation of solar photovoltaic module. J Eng Appl Sci 4:28–37

    Google Scholar 

  16. Sablon K, Little J, Vagidov N, Li Y, Mitin V, Sergeev A (2014) Conversion of above- and below band gap photons via InAs quantum dot media embedded into GaAs solar cell. Appl Phys Lett 104:253904

    Article  Google Scholar 

  17. Kim Y, Ban KY, Honsberg CB (2015) Multi-stacked InAs/GaAs quantum dots grown with different growth modes for quantum dot solar cells. Appl Phys Lett 106:222104

    Article  Google Scholar 

  18. Lam P, Hatch S, Wu J, Tang M, Dorogan VG, Mazur YI, Salamo GJ, Ramiro I, Seeds A, Liu H (2014) Voltage recovery in charged InAs/GaAs quantum dot solar cells. Nano Energy 6:159–166

    Article  Google Scholar 

  19. Kim D, Tang M, Wu J, Hatch S, Maidaniuk Y, Dorogan V, Mazur YI, Salamo GJ, Liu H (2017) Si-Doped InAs/GaAs quantum-dot solar cell with AlAs cap layers. In: E3S web of conferences, ESPC 2016, vol 16, pp 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Aissat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aissat, A., Harchouch, N., Vilcot, J.P. (2019). Optimization of the Temperature Effects on Structure InAs/GaAs QDSC. In: Hajji, B., Tina, G.M., Ghoumid, K., Rabhi, A., Mellit, A. (eds) Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy. ICEERE 2018. Lecture Notes in Electrical Engineering, vol 519. Springer, Singapore. https://doi.org/10.1007/978-981-13-1405-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1405-6_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1404-9

  • Online ISBN: 978-981-13-1405-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics