Skip to main content

Effect of Sputtering Area Ratio of Gold/Silica Target and Thermal Annealing on Structural and Optical Absorption Properties of Au Nanoparticles Dispersed in Amorphous Silica Dielectric Films

  • Conference paper
  • First Online:
Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy (ICEERE 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 519))

  • 1432 Accesses

Abstract

Gold-containing silica films were prepared by magnetron radio frequency (rf) co-sputtering technique, by varying the area ratio of gold/silica target \((r_{Au/SiO_2})\) and subsequent thermal annealing. The effect of deposition conditions on the formation of Au nanoparticles were studied by X-ray diffractometry (XRD) and optical absorption measurements. From the observation of measured spectra of the as-grown composite films, the presence of broad Au diffraction peaks in the XRD spectrum in addition to the amorphous silica pattern and absence of surface plasmon resonance band in the optical absorption spectra, suggests that the size of Au nanoparticles dispersed in silica films is less than 2 nm. After annealing at different tempertures up to 500 \(^\circ \)C, no significant changes in structural and optical absorption spectra was observed in the case of the samples deposited at \((r_{Au/SiO_2}=1.3\%)\), while for samples synthesized at \((r_{Au/SiO_2}=2.6\%)\), a weak but relatively broad absorption band in the absorption spectra starts appearing revealing that Au nanoparticles with size larger than 2 nm exists in \(SiO_2\) matrix. With increase of annealing temperature, the intensity of absorbance peak increases and showed a red shift on the SPR position. Experimental optical absorption spectra were theoretically simulated by modified Mie theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armelao L, Barreca D, Bottaro E, Gasparotto A, Gross S, Marino C, Tondello E (2006) Recent trends on nanocomposites based on Cu, Ag and Au clusters: a closer look. Coord Chem Rev 250:1294–1314. https://doi.org/10.1016/j.ccr.2005.12.003

    Article  Google Scholar 

  2. Céspedes E, Babonneau D, Meneses DS, Prietol C, Fonda E, Lyon O, Briand E, Traverse A (2011) Effects of Au layer thickness and number of bilayers on the properties of Au/ZnO multilayers. J Appl Phys 109:094308–094317. https://doi.org/10.1063/1.3580333

    Article  Google Scholar 

  3. Buso D, Post M, Cantalini C, Mulvaney P, Martucci A (2008) Gold nanoparticle-doped TiO\(_2\) semiconductor thin films: gas sensing properties. Adv Funct Mater 18:3843–3849. https://doi.org/10.1002/adfm.200800864

    Article  Google Scholar 

  4. Chan K, Aspanut Z, Goh B, Sow C, Varghese B, Rahman SA, Muhamad MR (2011) Effects of post-thermal annealing temperature on the optical and structural properties of gold particles on silicon suboxide films. Appl Surf Sci 257:2208–2213. https://doi.org/10.1016/j.apsusc.2010.09.074

    Article  Google Scholar 

  5. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin. https://doi.org/10.1007/978-3-662-09109-8

    Book  Google Scholar 

  6. Mathpal MC, Tripathi AK, Singh MK, Gairola SP, Pandey SN, Agarwal A (2013) Effect of annealing temperature on Raman spectra of TiO\(_2\) nanoparticles. Chem Phys Lett 555:182–186. https://doi.org/10.1016/j.cplett.2012.10.082

    Article  Google Scholar 

  7. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York. https://doi.org/10.1002/9783527618156

    Book  Google Scholar 

  8. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062. https://doi.org/10.1021/nl034372s

    Article  Google Scholar 

  9. Huang Y, Duan X, Wei QY (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630–633. https://doi.org/10.1126/science.291.5504.630

    Article  Google Scholar 

  10. Schultz DA (2003) Plasmon resonant particles for biological detection. Curr Opin Biotechnol 14:13–22. https://doi.org/10.1016/s0958-1669(02)00015-0

    Article  Google Scholar 

  11. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. https://doi.org/10.1002/chin.20031624

    Article  Google Scholar 

  12. Kreibig U, Fragstein CV (1969) The limitation of electron mean free path in small silver particles. Z Phys 224:307–323. https://doi.org/10.1007/bf01393059

    Article  Google Scholar 

  13. Kreibig U, Genzel L (1985) Optical absorption of small metallic particles. Surf Sci 156:678–700. https://doi.org/10.1016/0039-6028(85)90239-0

    Article  Google Scholar 

  14. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819. https://doi.org/10.1021/jp066539m

    Article  Google Scholar 

  15. Link K, El-Sayed MA (2000) Shape and size dependence of radioactive, non radioactive and photo thermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453. https://doi.org/10.1080/01442350050034180

    Article  Google Scholar 

  16. Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113. https://doi.org/10.1007/s11468-009-9080-8

    Article  Google Scholar 

  17. Santos DF, Guerreiro A, Baptista JM (2017) Simultaneous plasmonic measurement of refractive index and temperature based on a D-typefiber sensor with gold wires. IEEE Sens. J 17:2439–2446. https://doi.org/10.1109/jsen.2017.2674522

    Article  Google Scholar 

  18. Mie G (1908) Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann Phys 25:377–445. https://doi.org/10.1002/andp.19083300302

    Article  Google Scholar 

  19. Hovel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys Rev B 48:18178–18188. https://doi.org/10.1103/physrevb.48.18178

    Article  Google Scholar 

  20. Takahiro K, Oizumi O, Morimoto K, Kawatsura K, Isshiki T, Nishio K, Nagata S, Yamamoto S, Narumi K, Naramoto H (2009) Application of X-ray photoelectro spectroscopy to characterization of Au nanoparticles formed by ion implantation into \(SiO_2\). Appl Surf Sci 256:1061–1064. https://doi.org/10.1016/j.apsusc.2009.05.104

    Article  Google Scholar 

  21. Cesca T, Maurizio C, Kalinic B, Scian C, Trave E, Battaglin G, Mazzoldi P, Mattei G (2014) Luminescent ultra-small gold nanoparticles obtained by ion implantation in silica. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 326:7–10. https://doi.org/10.1016/j.nimb.2013.07.023

    Article  Google Scholar 

  22. Ferrara MC, Mirenghi L, Mevoli A, Tapfer L (2008) Synthesis and characterization of sol-gel silica films doped with size-selected gold nanoparticles. Nanotechnology 19:65706–65714. https://doi.org/10.1088/0957-4484/19/36/365706

    Article  Google Scholar 

  23. Belahmar A, Chouiyakh A (2013) Effect of post-annealing on structural and optical properties of gold nanoparticles embedded in silica films grown by RF-sputtering. Adv Phys Theor Appl 15:38–46

    Google Scholar 

  24. Belahmar A, Chouiyakh A (2016) Investigation of surface plasmon resonance and optical band gap energy in gold/silica composite films prepared by RF-sputtering. J Nanosci Technol 2:81–84

    Google Scholar 

  25. Belahmar A, Chouiyakh A (2017) Effect of substrate temperature on structural and optical properties of \(Au/SiO_2\) nanocomposite films prepared by RF magnetron sputtering. Open Access Lib J 4(e3810):1–11. https://doi.org/10.4236/oalib.1103810

    Article  Google Scholar 

  26. Doremus HR, Rao P (1996) Optical properties of nanosized gold particles. J Mater Res 11:2834–2840. https://doi.org/10.1557/jmr.1996.0358

    Article  Google Scholar 

  27. Belahmar A, Chouiyakh A (2014) Influence of the fabrication conditions on the formation and properties of gold nanoparticles in alumina matrix produced by cosputtering. Int J Nano Mater Sci 3:16–29. https://doi.org/10.30799/jtfr.010.17010106

    Article  Google Scholar 

  28. Palpant B, Prevel B, Lerme J, Cottancin E, Pellarin M, Treilleux M, Perez A, Vialle JL, Broyer M (1998) Optical properties of gold clusters in the size range 2–4 nm. Phys Rev B 57:1963–1970. https://doi.org/10.1021/la00033a010

    Article  Google Scholar 

  29. Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 9:2301–2309. https://doi.org/10.1021/la00033a010

    Article  Google Scholar 

  30. Pinçon N, Palpant P, Prot D, Charron E, Debrus S (2002) Third-order nonlinear optical response of Au: SiO\(_2\) thin films: influence of gold nanoparticle concentration and morphologic parameters. Eur Phys J D 19:395–402. https://doi.org/10.1016/s0928-4931(01)00431-3

    Article  Google Scholar 

  31. Roetzinger N, Prot PD, Palpant B, Charron E, Debrus S (2002) Large optical Kerr effect in matrix-embedded metal nanoparticles. Mater Sci Eng C 19:51–54. https://doi.org/10.1016/s0928-4931(01)00431-3

    Article  Google Scholar 

  32. Lerme J, Palpant B, Prevel B, Cottancin E, Pellarin M, Treilleux M, Vaille JL, Perez A, Broyer M (1998) Optical properties of gold metal clusters: a time-dependent local-density-approximation investigation. Eur Phys J D 4:95–108. https://doi.org/10.1007/s100530050189

    Article  Google Scholar 

  33. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712. https://doi.org/10.1021/jp962922n

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor M.J.M. Gomes from the Centre of Physics, University of Minho, Portugal, for the experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Chouiyakh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belahmar, A., Chouiyakh, A., Bendoumou, A., Fahoume, M. (2019). Effect of Sputtering Area Ratio of Gold/Silica Target and Thermal Annealing on Structural and Optical Absorption Properties of Au Nanoparticles Dispersed in Amorphous Silica Dielectric Films. In: Hajji, B., Tina, G.M., Ghoumid, K., Rabhi, A., Mellit, A. (eds) Proceedings of the 1st International Conference on Electronic Engineering and Renewable Energy. ICEERE 2018. Lecture Notes in Electrical Engineering, vol 519. Springer, Singapore. https://doi.org/10.1007/978-981-13-1405-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1405-6_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1404-9

  • Online ISBN: 978-981-13-1405-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics