Skip to main content

Secured Human Authentication Using Finger-Vein Patterns

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 808))

Abstract

In any organization, providing a secured authentication system is a challenge. Here, we propose a secured authentication process using finger-vein patterns. Finger vein is a reliable biometric trait because of its distinctiveness and permanence properties. The proposed algorithm initially captures the finger-vein image and is preprocessed using Gaussian blur and morphological operations. Then features like number of corner points and the location of these corner points are extracted. The features fetched for an individual from database are compared against the extracted features. If the comparison satisfies predefined threshold value, then the authentication is successful. The simulation results of the proposed algorithm have produced the FAR as 2.78%, FRR as 0.09% and the overall performance as 99.96%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lingyu, W., & Leedham, G. (2006). Near and far infrared imaging for vein pattern biometrics. In IEEE International Conference on Video and Signal Based Surveillance (AVSS 06) (p. 52).

    Google Scholar 

  2. Hegde, C., et al. (2011). FKP biometrics for human authentication using Gabor wavelets. In Proceedings of International Conference IEEE—TENCON 2011 (pp. 1072–1076). Bali, Indonesia.

    Google Scholar 

  3. Jain, A. K., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE Transactions on Circuits and System, 14(1), 4–20.

    Google Scholar 

  4. Hegde, C., et al. (2009). Authentication of damaged hand-vein patterns by modularization. In Proceedings of International conference IEEE TENCON-2009 (pp. 1–6), Singapore.

    Google Scholar 

  5. Liang, B., et. al. (2014). A novel fingerprint-based biometric encryption. In Proceedings of International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC).

    Google Scholar 

  6. Yuan, L., Mu, Z., & Xu, Z. (2005, October). Using ear biometrics for personal recognition. In International Workshop on Biometric Recognition Systems, IWBRS2005 (pp. 221–228), Beijing, China.

    Google Scholar 

  7. Hegde, C., et al. (2011). Heartbeat biometrics for human authentication. Signal, Image and Video Processing Journal, Special Issue on Unconstrained Biometrics: Advances and Trends, 5(3), 485–493. ISSN 1863-1703.

    Google Scholar 

  8. Singh, Y. N., & Gupta, P. (2009). Biometrics method for human identification using electrocardiogram. In M. Tistarelli, M. S. Nixon (Eds.), ICB 2009 (LNCS, Vol. 5558, pp. 1270–1279). Springer, Heidelberg.

    Google Scholar 

  9. Simon, B. P., & Eswaran, C. (1997). An ECG classifier designed using modified decision based neural network. Computers and Biomedical Research, 30, 257–272.

    Article  Google Scholar 

  10. Zhang, L., Zhang, L., & Zhang, D. (2009). Finger-knuckle-print: A new biometric identifier. In Proceedings of IEEE International Conference on Image Processing.

    Google Scholar 

  11. Hegde, C., et al. (2013). Authentication using Finger Knuckle Prints. Signal, Image and Video Processing Journal, Special Issue on Image and Video Processing for Security, 7(4), 633–645. ISSN 1863-1703.

    Google Scholar 

  12. Miura, N., & Nagasaka, A. (2004). Feature extraction of finger-vein pattern based on repeated line tracking and its application to personal identification. Machine Vision and Applications, 15(4), 194–203.

    Article  Google Scholar 

  13. Miura, N., Nagasaka, A., & Miyatake, T. (2007). Extraction of finger-vein patterns using maximum curvature points in image profiles. IEICE Transactions on Information and Systems, E90-D(8), 1185–1194.

    Google Scholar 

  14. Kumar, A., & Zhou, Y. B. (2012). Human identification using finger images. IEEE Transactions on Image Process, 21(4), 2228–2244.

    Article  MathSciNet  Google Scholar 

  15. Song, W., Kim, T., Kim, H. C., Choi, J. H., Kong, H. J., & Lee, S. R. (2011). A finger-vein verification system using mean curvature. Pattern Recognition Letter, 32(11), 1541–1547.

    Article  Google Scholar 

  16. Qin, H. F., Yu, C. B., & Qin, L. (2011). Region growth–based feature extraction method for finger-vein recognition. Optical Engineering, 50(5), 057208–057208.

    Google Scholar 

  17. Lee, E. C., & Park, K. R. (2009). Restoration method of skin scattering blurred vein image for finger vein recognition. Electronics Letters, 45(21), 1074–1076.

    Google Scholar 

  18. Liu, T., Xie, J. B., Yan, W., Li, P. Q., & Lu, H. Z. (2013). An algorithm for finger-vein segmentation based on modified repeated line tracking. The Imaging Science Journal, 61(6), 491–502.

    Article  Google Scholar 

  19. Wu, J.-D., & Ye, S.-H. (2009). Driver identification using finger-vein patterns with Radon transform and neural network. Expert Systems and Application, 36(3), 5793–5799.

    Google Scholar 

  20. Kono, M., Ueki, H., & Umemura, S. (2002). Near-infrared finger vein patterns for personal identification. Applied Optics, 41(35), 7429–7436.

    Google Scholar 

  21. Nandakumar, K., Chen, Y., Dass, S. C., & Jain, A. K. (2008). Likelihood ratio based biometric score fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 342–347.

    Google Scholar 

  22. Mulyono, D., & Jinn, H. S. (2008). A study of finger vein biometric for personal identification. In Proceedings of ISBAST (pp. 1–8).

    Google Scholar 

  23. Sim, T., Zhang, S., Janakiraman, R., & Kumar, S. (2007). Continuous verification using multimodal biometrics. IEEE Transaction on Pattern Analysis and Machine Intelligence, 29(4), 687–700.

    Google Scholar 

  24. Harris, C., & Stephens, M. (1988). A combined corner and edge detector. In Proceedings of the 4th Alvey Vision Conference (pp. 147–151).

    Google Scholar 

  25. Yin, Y. L., Liu, L. L., & Sun, X. W. (2011). SDUMLA-HMT: A multimodal biometric database. In The 6th Chinese Conference on Biometric Recognition, LNCS 7098 (pp. 260–268), Beijing, China.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetana Hegde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madhusudhan, M.V., Basavaraju, R., Hegde, C. (2019). Secured Human Authentication Using Finger-Vein Patterns. In: Balas, V., Sharma, N., Chakrabarti, A. (eds) Data Management, Analytics and Innovation. Advances in Intelligent Systems and Computing, vol 808. Springer, Singapore. https://doi.org/10.1007/978-981-13-1402-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1402-5_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1401-8

  • Online ISBN: 978-981-13-1402-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics