Skip to main content

Multi-object Model-Based Multi-atlas Segmentation Constrained Grid Cut for Automatic Segmentation of Lumbar Vertebrae from CT Images

  • Chapter
  • First Online:
Intelligent Orthopaedics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1093))

Abstract

In this chapter, we present a multi-object model-based multi-atlas segmentation constrained grid cut method for automatic segmentation of lumbar vertebrae from a given lumbar spinal CT image. More specifically, our automatic lumbar vertebrae segmentation method consists of two steps: affine atlas-target registration-based label fusion and bone-sheetness assisted multi-label grid cut which has the inherent advantage of automatic separation of the five lumbar vertebrae from each other. We evaluate our method on 21 clinical lumbar spinal CT images with the associated manual segmentation and conduct a leave-one-out study. Our method achieved an average Dice coefficient of 93.9 ± 1.0% and an average symmetric surface distance of 0.41 ± 0.08 mm.

Weimin Yu and Wenyong Liu contributed equally to this paper

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aslan M, Ali A, Chen D, Arnold B, Farag A, Xiang P (2010) 3D vertebrae segmentation using graph cuts with shape prior constraints. In: Proceedings of the ICIP 2010, pp 2193–2196, Hong Kong, China

    Google Scholar 

  2. Balmain Sports Medicine (2014) Common lumbar spine injuries. https://www.balmainsportsmed.com.au/injury-library/injury-information/lumber-and-spine.html. [Online; Accessed 09 Oct 2017]

  3. Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137

    Article  PubMed Central  Google Scholar 

  4. Chen H, Shen C, Qin J et al (2015) Automatic localization and identification of vertebrae in spine ct via a joint learning model with deep neural network. In: Proceedings of the MICCAI 2015, pp 515–522, Munich, Germany

    Google Scholar 

  5. Chu C, Belavy D et al (2015) Fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images via a learning-based method. PLoS One 10(11):e0143327

    Article  PubMed Central  Google Scholar 

  6. Damopoulos D, Glocker B, Zheng G (2017) Automatic localization of the lumbar vertebral landmarks in CT images with context features. In: Proceedings of the 2017 MICCAI-MSKI workshop, pp 56–68, Quebec City, Canada

    Google Scholar 

  7. Descoteaux M, Audette M, Chinzei K, Siddiqi K (2005) Bone enhancement filtering: application to sinus bone segmentation and simulation of pituitary surgery. In: Proceedings of the MICCAI 2005, pp 9–16, Palm Springs, USA

    Google Scholar 

  8. Ibragimov B, Likar B, Pernus F, Vrtovec T (2014) Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans Med Imaging 33(4):861–874S. https://doi.org/10.1109/TMI.2013.2296976

    Article  PubMed Central  Google Scholar 

  9. Jamriška O, Sýkora D, Hornung A (2012) Cache-efficient graph cuts on structured grids. In: Proceedings of the CVPR 2012, pp 3673–3680, Rhode Island, USA

    Google Scholar 

  10. Kadoury S, Labelle H, Paragios N (2013) Spine segmentation in medical images using manifold embeddings and higher-order MRFs. IEEE Trans Med Imaging 32(7):1227–1238. https://doi.org/10.1109/TMI.2013.2244903

    Article  PubMed Central  Google Scholar 

  11. Klein S, Staring M, Murphy K, Viergever M, Pluim J (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205

    Article  Google Scholar 

  12. Korez R, Ibragimov B, Likar B, Pernus F, Vrtovec T (2015) A framework for automated spine and vertebrae interpolation-based detection and model-based segmentation. IEEE Trans Med Imaging 34:1649–1662

    Article  PubMed Central  Google Scholar 

  13. Krčah M, Székely G, Blanc R (2011) Fully automatic and fast segmentation of the femur bone from 3D-CT images with no shape prior. In: Proceedings of the ISBI 2011, pp 2087–2090, Chicago, USA

    Google Scholar 

  14. Lim P, Bagci U, Bai L (2013) Introducing willmore flow into level set segmentation of spinal vertebrae. IEEE Trans Biomed Eng 60(1):115–122

    Article  PubMed Central  Google Scholar 

  15. Sekuboyina A, Kukacka J, Kirschke J, Menze B, Valentinitsch A (2017) Attention-driven deep learning for pathological spine segmentation. In: Proceedfing of 2017 MICCAI-MSKI workshop, pp 104–115, Quebec City, Canada

    Google Scholar 

  16. \(\check{S}\) tern D, Likar B, Pernus F, Vrtovec T (2011) Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Phys Med Biol 56:7505–7522. https://doi.org/doi:10.1088/0031-9155/56/23/011

    Article  PubMed Central  Google Scholar 

  17. Yao J, Burns J, Forsberg D et al (2016) A multi-center milestone study of clinical vertebral CT segmentation. Comput Med Imaging Graph 49: 16–28

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, W., Liu, W., Tan, L., Zhang, S., Zheng, G. (2018). Multi-object Model-Based Multi-atlas Segmentation Constrained Grid Cut for Automatic Segmentation of Lumbar Vertebrae from CT Images. In: Zheng, G., Tian, W., Zhuang, X. (eds) Intelligent Orthopaedics. Advances in Experimental Medicine and Biology, vol 1093. Springer, Singapore. https://doi.org/10.1007/978-981-13-1396-7_5

Download citation

Publish with us

Policies and ethics