Skip to main content

Multilevel Fuzzy Control Based on Force Information in Robot-Assisted Decompressive Laminectomy

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1093))

Abstract

The lumbar spinal stenosis (LSS) is a kind of orthopedic disease which causes a series of neurological symptom. Vertebral lamina grinding operation is a key procedure in decompressive laminectomy for LSS treatment. With the help of image-guided navigation system, the robot-assisted technology is applied to reduce the burdens on surgeon and improve the accuracy of the operation. This paper proposes a multilevel fuzzy control based on force information in the robot-assisted decompressive laminectomy to improve the quality and the robotic dynamic performance in surgical operation. The controlled grinding path is planned in the medical images after 3D reconstruction, and the mapping between robot and images is realized by navigation registration. Multilevel fuzzy controller is used to adjust the feed rate to keep the grinding force stable. As the vertebral lamina contains different components according to the anatomy, it has different mechanical properties as the main reason causing the fluctuation of force. A feature extraction method for texture recognition of bone is introduced to improve the accuracy of component classification. When the inner cortical bone is reached, the feeding operation needs to stop to avoid penetration into spinal cord and damage to the spinal nerves. Experiments are conducted to evaluate the dynamic stabilities of the control system and state recognition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bertelsen A, Melo J, Sánchez E, Borro D (2013) A review of surgical robots for spinal interventions. Int J Med Robot 9:407–422. https://doi.org/10.1002/rcs.1469

    Article  PubMed  Google Scholar 

  2. Chad DA (2007) Lumbar spinal stenosis. Neurol Clin 25:407–418

    Article  PubMed  Google Scholar 

  3. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(27):1–27

    Article  Google Scholar 

  4. Chen X, Varley MR, Shark LK, Shentall GS, Kirby MC (2008) A computationally efficient method for automatic registration of orthogonal x-ray images with volumetric CT data. Phys Med Biol 53: 967–983

    Article  PubMed  Google Scholar 

  5. Chung GB, Lee SG, Oh SM, Yi BJ (2004) Development of SPINEBOT for spine surgery. In: IEEE/RSJ international conference on intelligent robots and systems, vol 4, pp 3942–3947

    Google Scholar 

  6. Chung GB, Lee SG, Kim S, Yi BJ, Kim WK, Oh SM, Kim YS, Park JI, Oh SH (2005) A robot-assisted surgery system for spinal fusion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. pp 3015–3021

    Google Scholar 

  7. Chung GB, Kim S, Lee SG, Yi BJ, Kim W, Oh SM, Kim YS, So BR, Park JI, Oh SH (2006) An image-guided robotic surgery system for spinal fusion. Int J Control Autom Syst 4:30–41

    Google Scholar 

  8. Deng Z, Jin H, Hu Y, He Y, Zhang P, Tian W, Zhang J (2016) Fuzzy force control and state detection in vertebral lamina grinding. Mechatronics 35:1–10

    Article  CAS  Google Scholar 

  9. Fan L, Gao P, Zhao B, Sun Y, Xin X, Hu Y, Liu S, Zhang J (2016) Safety control strategy for vertebral Lamina grinding task. Caai Trans Intell Technol

    Google Scholar 

  10. Foley K, Simon D, Rampersaud Y (2001) Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine 26:347

    Article  CAS  PubMed  Google Scholar 

  11. Holly LT (2006) Image-guided spinal surgery. Int J Med Robot 2:7–15

    Article  PubMed  Google Scholar 

  12. Inoue T, Sugita N, Mitsuishi M, Saito T (2010) Optimal control of cutting feed rate in the robotic grinding for total knee arthroplasty. In: IEEE Ras and Embs International Conference on Biomedical Robotics and Biomechatronics. pp 215–220

    Google Scholar 

  13. Kim EH, Kim HT (2009) En bloc partial laminectomy and posterior lumbar interbody fusion in Foraminal spinal stenosis. Asian Spine J 3:66–72. https://doi.org/10.4184/asj.2009.3.2.66

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kwoh YS (1985) A new computerized tomographic aided robotic stereotactic system. Robot Age 7:17–21

    Google Scholar 

  15. Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35:153

    Article  CAS  PubMed  Google Scholar 

  16. Lee CC (1990) Fuzzy logic in control systems: fuzzy logic. Parts I and II, IEEE Trans. IEEE Trans Syst Man Cybern 20:404–418

    Article  Google Scholar 

  17. Lei W, Xin G, Qiang F (2013) A novel mutual information-based similarity measure for 2D/3D registration in image guided intervention. In: International Conference on Orange Technologies. pp 135–138

    Google Scholar 

  18. Luan S, Wang T, Li W, Liu Z, Jiang L, Hu L (2012) 3D navigation and monitoring for spinal grinding operation based on registration between multiplanar fluoroscopy and CT images. Comput Methods Prog Biomed 108:151–157

    Article  Google Scholar 

  19. Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 16:642–661

    Article  CAS  PubMed  Google Scholar 

  20. Mclaughlin RA, Hipwell J, Hawkes DJ, Noble JA, Byrne JV, Cox TCS (2002) A comparison of 2D-3D intensity-based registration and feature-based registration for Neurointerventions. Med Image Comput Comput-Assist Interv 2489:517–524

    Google Scholar 

  21. Nolte LP, Visarius H, Arm E, Langlotz F, Schwarzenbach O, Zamorano L (1995a) Computer-aided fixation of spinal implants. J Image Guid Surg 1:88–93

    Article  CAS  PubMed  Google Scholar 

  22. Nolte LP, Zamorano L, Visarius H, Berlemann U, Langlotz F, Arm E, Schwarzenbach O (1995b) Clinical evaluation of a system for precision enhancement in spine surgery. Clin Biomech 10:293

    Article  Google Scholar 

  23. Nolte LP, Slomczykowski MA, Berlemann U, Strauss MJ, Hofstetter R, Schlenzka D, Laine T, Lund T (2000) A new approach to computer-aided spine surgery: fluoroscopy-based surgical navigation. Eur Spine J 9:S078–S088

    Article  PubMed Central  Google Scholar 

  24. P MFCAVDMGS (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198

    Article  Google Scholar 

  25. Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22:986–1004

    Article  PubMed  Google Scholar 

  26. Russakoff DB, Rohlfing T, Mori K, Rueckert D, Ho A, Adler JR, Maurer CR (2005) Fast generation of digitally reconstructed radiographs using attenuation fields with application to 2D-3D image registration. IEEE Trans Med Imaging 24:1441

    Article  PubMed  Google Scholar 

  27. Santos-Munné JJ, Peshkin MA, Mirkovic S, Stulberg SD, Iii TCK (1995) A stereotactic/robotic system for pedicle screw placement

    Google Scholar 

  28. Sautot P, Cinquin P, Lavallee S, Troccaz J (1992) Computer assisted spine surgery: a first step toward clinical, application in orthopaedics. In: Engineering in Medicine and Biology Society, 1992 International Conference of the IEEE. pp 1071–1072

    Google Scholar 

  29. Shoham M, Burman M, Zehavi E, Joskowicz L (2003) Bone-mounted miniature robot for surgical procedures: concept and clinical applications. Robot Autom IEEE Trans On 19:893–901

    Article  Google Scholar 

  30. Siddon RL (1985) Fast calculation of the exact radiological path for a three-dimensional CT array. Med Phys 12:252

    Article  CAS  PubMed  Google Scholar 

  31. Singh K, Vaccaro AR (2012) Pocket atlas of spine surgery. Stuttgart Georg Thieme Verlag

    Google Scholar 

  32. Stephane Genevay SJA (2010) Lumbar Spinal Stenosis. Best Pract Res Clin Rheumatol 24:253–265

    Article  PubMed Central  PubMed  Google Scholar 

  33. Sugita N, Genma F, Nakajima Y, Mitsuishi M (2007) Adaptive controlled grinding robot for orthopedic surgery. In: IEEE International Conference on Robotics and Automation. pp 605–610

    Google Scholar 

  34. Sugita N, Nakano T, Nakajima Y, Fujiwara K, Abe N, Ozaki T, Suzuki M, Mitsuishi M (2009) Dynamic controlled grinding process for bone machining. J Mater Process Technol 209:5777–5784

    Article  CAS  Google Scholar 

  35. Sugita N, Nakano T, Kato T, Nakajima Y, Mitsuishi M (2010) Instrument path generator for bone machining in minimally invasive orthopedic surgery. IEEEASME Trans Mechatron 15:471–479

    Article  Google Scholar 

  36. Sundermann E, Jacobs F, Christiaens M, Sutter BD, Lemahieu I (1998) A fast algorithm to calculate the exact radiological path through a pixel or voxel space. J Comput Inf Technol 6:89–94

    Google Scholar 

  37. Szpalski M, Gunzburg R (2003) Lumbar spinal stenosis in the elderly: an overview. Eur Spine J 12:S170–S175

    Article  PubMed Central  PubMed  Google Scholar 

  38. Taylor RH, Mittelstadt BD, Paul HA, Hanson W, Kazanzides P, Zuhars JF, Williamson B, Musits BL, Glassman E, Bargar WL (1994) An image-directed robotic system for precise orthopaedic surgery. IEEE Trans Robot Autom 10:261–275

    Article  Google Scholar 

  39. Tjardes T, Shafizadeh S, Rixen D, Paffrath T, Bouillon B, Steinhausen ES, Baethis H (2010) Image-guided spine surgery: state of the art and future directions. Eur Spine J 19:25–45

    Article  PubMed  Google Scholar 

  40. Wang L, Gao X, Zhang R, Xia W (2014) A comparison of two novel similarity measures based on mutual information in 2D/3D image registration. In: IEEE International Conference on Medical Imaging Physics and Engineering. pp 215–218

    Google Scholar 

  41. Xu C, Shin YC (2005) Design of a multilevel fuzzy controller for nonlinear systems and stability analysis. IEEE Trans Fuzzy Syst 13:761–778

    Article  Google Scholar 

  42. Xu C, Shin YC (2008) An adaptive fuzzy controller for constant cutting force in end-grinding processes. J Manuf Sci Eng 130:683–695

    Google Scholar 

  43. Yen PL, Hung SS (2010) An intelligent bone cutting instrument in robot-assisted knee replacement. In: Sice conference 2010, proceedings of. pp 1894–1899

    Google Scholar 

  44. Yen PL, Tsai CH (2007) Cooperative force control of a knee surgical robot for lateral grinding of bone. In: IEEE Workshop on Advanced Robotics and ITS Social Impacts. pp 1–6

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. U1613224, U1713221 and 61573336) and the National Key R&D Program of China (Grant No. 2017YFC0110600), in part by Shenzhen Fundamental Research Funds (Grant Nos. JCYJ20150529143500954, JCYJ20160608153218487, JCYJ20170307170252420 and JCYJ20160229202315086) and Shenzhen Key Laboratory Project (Grant No. ZDSYS201707271637577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qi, X., Sun, Y., Ma, X., Hu, Y., Zhang, J., Tian, W. (2018). Multilevel Fuzzy Control Based on Force Information in Robot-Assisted Decompressive Laminectomy. In: Zheng, G., Tian, W., Zhuang, X. (eds) Intelligent Orthopaedics. Advances in Experimental Medicine and Biology, vol 1093. Springer, Singapore. https://doi.org/10.1007/978-981-13-1396-7_20

Download citation

Publish with us

Policies and ethics