Skip to main content

A Novel Ultrasound-Based Lower Extremity Motion Tracking System

  • Chapter
  • First Online:
Book cover Intelligent Orthopaedics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1093))

Abstract

Tracking joint motion of the lower extremity is important for human motion analysis. In this study, we present a novel ultrasound-based motion tracking system for measuring three-dimensional (3D) position and orientation of the femur and tibia in 3D space and quantifying tibiofemoral kinematics under dynamic conditions. As ultrasound is capable of detecting underlying bone surface noninvasively through multiple layers of soft tissues, an integration of multiple A-mode ultrasound transducers with a conventional motion tracking system provides a new approach to track the motion of bone segments during dynamic conditions. To demonstrate the technical and clinical feasibilities of this concept, an in vivo experiment was conducted. For this purpose the kinematics of healthy individuals were determined in treadmill walking conditions and stair descending tasks. The results clearly demonstrated the potential of tracking skeletal motion of the lower extremity and measuring six-degrees-of-freedom (6-DOF) tibiofemoral kinematics and related kinematic alterations caused by a variety of gait parameters. It was concluded that this prototyping system has great potential to measure human kinematics in an ambulant, non-radiative, and noninvasive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramsey DK, Wretenberg PF (1999) Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint. Clin Biomech 14(9):595–611. https://doi.org/10.1016/S0268-0033(99)00015-7

    Article  CAS  Google Scholar 

  2. Schilling C, Krüger S, Grupp TM, Duda GN, Blömer W, Rohlmann A (2011) The effect of design parameters of dynamic pedicle screw systems on kinematics and load bearing: an in vitro study. Eur Spine J 20(2):297–307. https://doi.org/10.1007/s00586-010-1620-6

    Article  CAS  PubMed  Google Scholar 

  3. Simon D. What is “registration” and why is it so important in CAOS

    Google Scholar 

  4. Sugano N, Sasama T, Sato Y, Nakajima Y, Nishii T, Yonenobu K et al (2001) Accuracy evaluation of surface-based registration methods in a computer navigation system for hip surgery performed through a posterolateral approach. Comput Aided Surg 6(4):195–203. https://doi.org/10.1002/igs.10011

    Article  CAS  PubMed  Google Scholar 

  5. Anderson KC, Buehler KC, Markel DC (2005) Computer assisted navigation in total knee arthroplasty: comparison with conventional methods. J Arthroplasty 20(7 Suppl 3):132–138. https://doi.org/10.1016/j.arth.2005.05.009

    Article  PubMed  Google Scholar 

  6. Mavrogenis AF, Savvidou OD, Mimidis G, Papanastasiou J, Koulalis D, Demertzis N et al (2013) Computer-assisted navigation in orthopedic surgery. Orthopedics 36(8):631–642. https://doi.org/10.3928/01477447-20130724-10

    Article  PubMed  Google Scholar 

  7. Kaiser JM, Vignos MF, Kijowski R, Baer G, Thelen DG (2017) Effect of Loading on In Vivo Tibiofemoral and Patellofemoral Kinematics of Healthy and ACL-Reconstructed Knees. Am J Sports Med 45(14):3272. https://doi.org/10.1177/0363546517724417

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zeng X, Ma L, Lin Z, Huang W, Huang Z, Zhang Y et al (2017) Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system. Sci Rep 7(1):4080. https://doi.org/10.1038/s41598-017-04390-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT et al (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950. https://doi.org/10.1109/tbme.2007.901024

    Article  PubMed  Google Scholar 

  10. Gerus P, Sartori M, Besier TF, Fregly BJ, Delp SL, Banks SA et al (2013) Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J Biomech 46(16):2778–2786. https://doi.org/10.1016/j.jbiomech.2013.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fuller J, Liu LJ, Murphy MC, Mann RW (1997) A comparison of lower-extremity skeletal kinematics measured using skin- and pin-mounted markers. Hum Mov Sci 16(2–3):219–242. https://doi.org/10.1016/S0167-9457(96)00053-X

    Article  Google Scholar 

  12. Richard V, Cappozzo A, Dumas R (2017) Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation. J Biomech. https://doi.org/10.1016/j.jbiomech.2017.01.030

    Article  PubMed  Google Scholar 

  13. Andersen MS, Benoit DL, Damsgaard M, Ramsey DK, Rasmussen J (2010) Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J Biomech 43(2):268–273. https://doi.org/10.1016/j.jbiomech.2009.08.034

    Article  PubMed  Google Scholar 

  14. Lafortune MA, Cavanagh PR, Sommer HJ, Kalenak A (1992) Three-dimensional kinematics of the human knee during walking. J Biomech 25(4):347–357. https://doi.org/10.1016/0021-9290(92)90254-X

    Article  CAS  PubMed  Google Scholar 

  15. Cereatti A, Bonci T, Akbarshahi M, Aminian K, Barre A, Begon M et al (2017) Standardization proposal of soft tissue artefact description for data sharing in human motion measurements. J Biomech. https://doi.org/10.1016/j.jbiomech.2017.02.004

    Article  PubMed  Google Scholar 

  16. Akbarshahi M, Schache AG, Fernandez JW, Baker R, Banks S, Pandy MG (2010) Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J Biomech 43(7):1292–1301. https://doi.org/10.1016/j.jbiomech.2010.01.002

    Article  PubMed  Google Scholar 

  17. Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renström P (2006) Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24(2):152–164. https://doi.org/10.1016/j.gaitpost.2005.04.012

    Article  PubMed  Google Scholar 

  18. Bonnet V, Richard V, Camomilla V, Venture G, Cappozzo A, Dumas R (2017) Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model. J Biomech. https://doi.org/10.1016/j.jbiomech.2017.04.033

    Article  PubMed  Google Scholar 

  19. Cappozzo A, Cappello A, Croce UD, Pensalfini F (1997) Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans Biomed Eng 44(12):1165–1174. https://doi.org/10.1109/10.649988

    Article  CAS  PubMed  Google Scholar 

  20. Andersen MS, Damsgaard M, Rasmussen J (2009) Kinematic analysis of over-determinate biomechanical systems. Comput Methods Biomech Biomed Eng 12(4):371–384. https://doi.org/10.1080/10255840802459412

    Article  CAS  Google Scholar 

  21. Bonnechère B, Sholukha V, Salvia P, Rooze M, Van Sint Jan S (2015) Physiologically corrected coupled motion during gait analysis using a model-based approach. Gait Posture 41(1):319–322. https://doi.org/10.1016/j.gaitpost.2014.09.012

    Article  PubMed  Google Scholar 

  22. Charlton IW, Tate P, Smyth P, Roren L (2004) Repeatability of an optimised lower body model. Gait Posture 20(2):213–221. https://doi.org/10.1016/j.gaitpost.2003.09.004

    Article  CAS  PubMed  Google Scholar 

  23. Duprey S, Cheze L, Dumas R (2010) Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. J Biomech 43(14):2858–2862. https://doi.org/10.1016/j.jbiomech.2010.06.010

    Article  PubMed  Google Scholar 

  24. Lu TW, O’Connor JJ et al (1999) J Biomech 32(2):129–134. https://doi.org/10.1016/S0021-9290(98)00158-4

    Article  CAS  PubMed  Google Scholar 

  25. Bingham J, Li G (2006) An optimized image matching method for determining in-vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system. J Biomech Eng 128(4):588–595. https://doi.org/10.1115/1.2205865

    Article  PubMed  Google Scholar 

  26. Baka N, Kaptein BL, Giphart JE, Staring M, de Bruijne M, Lelieveldt BPF et al (2014) Evaluation of automated statistical shape model based knee kinematics from biplane fluoroscopy. J Biomech 47(1):122–129. https://doi.org/10.1016/j.jbiomech.2013.09.022

    Article  PubMed  Google Scholar 

  27. Gray HA, Guan S, Pandy MG (2017) Accuracy of mobile biplane X-ray imaging in measuring 6-degree-of-freedom patellofemoral kinematics during overground gait. J Biomech 57:152–156. https://doi.org/10.1016/j.jbiomech.2017.04.009

    Article  PubMed  Google Scholar 

  28. Guan S, Gray HA, Keynejad F, Pandy MG (2016) Mobile biplane x-ray imaging system for measuring 3D dynamic joint motion during overground gait. IEEE Trans Med Imaging 35(1):326–336. https://doi.org/10.1109/TMI.2015.2473168

    Article  PubMed  Google Scholar 

  29. List R, Postolka B, Schutz P, Hitz M, Schwilch P, Gerber H et al (2017) A moving fluoroscope to capture tibiofemoral kinematics during complete cycles of free level and downhill walking as well as stair descent. PLoS One 12(10):e0185952. https://doi.org/10.1371/journal.pone.0185952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mazzoli V, Schoormans J, Froeling M, Sprengers AM, Coolen BF, Verdonschot N et al (2017) Accelerated 4D self-gated MRI of tibiofemoral kinematics. NMR Biomed. https://doi.org/10.1002/nbm.3791

    Article  Google Scholar 

  31. Clarke EC, Martin JH, d’Entremont AG, Pandy MG, Wilson DR, Herbert RD (2015) A non-invasive, 3D, dynamic MRI method for measuring muscle moment arms in vivo: Demonstration in the human ankle joint and Achilles tendon. Med Eng Phys 37(1):93–99. https://doi.org/10.1016/j.medengphy.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  32. Kaiser J, Bradford R, Johnson K, Wieben O, Thelen DG (2013) Measurement of 3D tibiofemoral kinematics using volumetric SPGR-VIPR Imaging. Magn Reson Med 69(5):1310–1316. https://doi.org/10.1002/mrm.24362

    Article  PubMed  Google Scholar 

  33. Forsberg D, Lindblom M, Quick P, Gauffin H (2016) Quantitative analysis of the patellofemoral motion pattern using semi-automatic processing of 4D CT data. Int J Comput Assist Radiol Surg 11(9):1731–1741. https://doi.org/10.1007/s11548-016-1357-8

    Article  PubMed  Google Scholar 

  34. Zhao K, Breighner R, Holmes D, Leng S, McCollough C, An K-N (2015) A technique for quantifying wrist motion using four-dimensional computed tomography: approach and validation. J Biomech Eng 137(7):0745011–0745015. https://doi.org/10.1115/1.4030405

    Article  PubMed Central  Google Scholar 

  35. Smistad E, Falch TL, Bozorgi M, Elster AC, Lindseth F (2015) Medical image segmentation on GPUs – A comprehensive review. Med Image Anal 20(1):1–18. https://doi.org/10.1016/j.media.2014.10.012

    Article  PubMed  Google Scholar 

  36. Wein W, Karamalis A, Baumgartner A, Navab N (2015) Automatic bone detection and soft tissue aware ultrasound–CT registration for computer-aided orthopedic surgery. Int J Comput Assist Radiol Surg 10(6):971–979. https://doi.org/10.1007/s11548-015-1208-z

    Article  PubMed  Google Scholar 

  37. Fieten L, Schmieder K, Engelhardt M, Pasalic L, Radermacher K, Heger S (2009) Fast and accurate registration of cranial CT images with A-mode ultrasound. Int J Comput Assist Radiol Surg 4(3):225–237. https://doi.org/10.1007/s11548-009-0288-z

    Article  PubMed  Google Scholar 

  38. Talib H, Peterhans M, Garcia J, Styner M, Gonzalez Ballester MA (2011) Information filtering for ultrasound-based real-time registration. IEEE Trans Biomed Eng 58(3):531–540. https://doi.org/10.1109/TBME.2010.2063703

    Article  PubMed  Google Scholar 

  39. Otake Y, Armand M, Armiger RS, Kutzer MD, Basafa E, Kazanzides P et al (2012) Intraoperative image-based multiview 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration. IEEE Trans Med Imaging 31(4):948–962. https://doi.org/10.1109/TMI.2011.2176555

    Article  PubMed  Google Scholar 

  40. Niu K, Sluiter V, Sprengers A, Homminga J, Verdonschot N (eds) (2017) A novel tibiafemoral kinematics measurement system based on multi-channel a-mode ultrasound system. In: CAOS 2017. 17th annual meeting of the international society for computer assisted orthopaedic surgery; 2017 June 13, EasyChair, Aachen

    Google Scholar 

  41. Miranda DL, Rainbow MJ, Leventhal EL, Crisco JJ, Fleming BC (2010) Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. J Biomech 43(8):1623–1626. https://doi.org/10.1016/j.jbiomech.2010.01.036

    Article  PubMed  PubMed Central  Google Scholar 

  42. Inc. PPT. VZ4000v technical specifications. http://www.ptiphoenix.com/products/trackers/VZ4000v. Accessed 3 Mar 2017

  43. Maurer CR Jr, Maciunas RJ, Fitzpatrick JM (1998) Registration of head CT images to physical space using a weighted combination of points and surfaces. IEEE Trans Med Imaging 17(5):753–761. https://doi.org/10.1109/42.736031

    Article  PubMed  Google Scholar 

  44. Besl PJ, McKay HD (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256. https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  45. Wu G, Cavanagh PR (1995) ISB recommendations for standardization in the reporting of kinematic data. J Biomech 28(10):1257–1261. https://doi.org/10.1016/0021-9290(95)00017-C

    Article  CAS  PubMed  Google Scholar 

  46. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144

    Article  CAS  PubMed  Google Scholar 

  47. Mannering N, Young T, Spelman T, Choong PF (2017) Three-dimensional knee kinematic analysis during treadmill gait: Slow imposed speed versus normal self-selected speed. Bone Joint Res 6(8):514–521. https://doi.org/10.1302/2046-3758.68.bjr-2016-0296.r1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guan S, Gray HA, Schache AG, Feller J, de Steiger R, Pandy MG (2017) In vivo six-degree-of-freedom knee-joint kinematics in overground and treadmill walking following total knee arthroplasty. J Orthop Res 35:1634–1643. https://doi.org/10.1002/jor.23466

    Article  CAS  PubMed  Google Scholar 

  49. Jia R, Monk P, Murray D, Noble JA, Mellon S (2017) CAT & MAUS: A novel system for true dynamic motion measurement of underlying bony structures with compensation for soft tissue movement. J Biomech. https://doi.org/10.1016/j.jbiomech.2017.04.015

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niu, K., Sluiter, V., Homminga, J., Sprengers, A., Verdonschot, N. (2018). A Novel Ultrasound-Based Lower Extremity Motion Tracking System. In: Zheng, G., Tian, W., Zhuang, X. (eds) Intelligent Orthopaedics. Advances in Experimental Medicine and Biology, vol 1093. Springer, Singapore. https://doi.org/10.1007/978-981-13-1396-7_11

Download citation

Publish with us

Policies and ethics