Skip to main content

Parallel Fuzzy Cognitive Map Using Evolutionary Feature Reduction for Big Data Classification Problem

  • Conference paper
  • First Online:
Social Transformation – Digital Way (CSI 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 836))

Included in the following conference series:

Abstract

Big data classification is a challenging task because of the enormous volume, variety velocity associated with it. As the amount of data increases it is more difficult for data scientist in collecting, cleaning and analyzing data. To find useful and meaningful data from unstructured data is an important task. Meaning full data can be found using different classification techniques. There are different techniques used so far to gain useful knowledge from big data such as K-Means clustering algorithm, Association rule mining algorithm, linear regression algorithms, logistic regression algorithms, Naïve Bayesian etc. Fuzzy Cognitive Maps (FCM) is another efficient approach which is being used for decision making. The difficulty of using FCMs for big data classification is with the number of large available parameters associated with the data set. Hence in this paper we propose a parallel fuzzy cognitive map using map Reduce framework which learns and classifies from a reduced feature set using parallel evolutionary genetic algorithm. The methodology is tested on Bench Mark Data sets and results show the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axelrod, R.: Structure of Decision: The Cognitive Maps of Political Elites. Prentice-Hall, Englewood Cliffs (1976)

    Google Scholar 

  2. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24, 65–75 (1986)

    Article  Google Scholar 

  3. Giles, B.G., et al.: Integrating conventional science and aboriginal perspectives on diabetes using fuzzy cognitive maps. Soc. Sci. Med. 64(3), 562–576 (2007)

    Article  Google Scholar 

  4. Zhai, et al. (2009)

    Google Scholar 

  5. Giabbanelli, P.J., Torsney-Weir, T., Mago, V.K.: A fuzzy cognitive map of the psychosocial determinants of obesity. Appl. Soft Comput. 12(12), 3711–3724 (2012)

    Article  Google Scholar 

  6. Reichelt, K., Lyneis, J.: The dynamics of project performance: benchmarking the drivers of cost and schedule overrun. Eur. Manag. J. 17(2), 135–150 (1999)

    Article  Google Scholar 

  7. Carvalho, J.P., Tome, J.A.: Rule based fuzzy cognitive maps: Expressing time in qualitative system dynamics. In: Proceedings of the 10th IEEE International Conference on Fuzzy System, pp. 280–283 (2001)

    Google Scholar 

  8. Salmeron, J.L.: Modeling grey uncertainty with fuzzy grey cognitive maps. Expert Syst. Appl. 37(12), 7581–7588 (2010)

    Article  Google Scholar 

  9. Iakovidis, D.K., Papageorgiou, E.I.: Intuitionistic fuzzy cognitive maps for medical decision making. IEEE Trans. Inf. Technol. Biomed. 15(1), 100–107 (2011)

    Article  Google Scholar 

  10. Miao, Y., Liu, Z.Q., Siew, C.K., Miao, C.Y.: Dynamical cognitive network: an extension of fuzzy cognitive map. IEEE Trans. Fuzzy Syst. 9(5), 760–770 (2001)

    Article  Google Scholar 

  11. Aguilar, J.: A dynamic fuzzy cognitive map approach based on random neural networks. Int. J. Comput. Cognit. 1(4), 91–107 (2003)

    Google Scholar 

  12. Kottas, T.L., Boutalis, Y.S., Christodoulou, M.A.: Fuzzy cognitive networks: a general framework. Intell. Decis. Technol. 1, 183–196 (2007)

    Article  Google Scholar 

  13. Cai, Y., Miao, C., Tan, A.-H., Shen, Z., Li, B.: Creating an immersive game world with evolutionary fuzzy cognitive maps. IEEE J. Comput. Graph. Appl. 30(2), 58–70 (2010)

    Article  Google Scholar 

  14. Wei, Z., Lu, L., Yanchun, Z.: Using fuzzy cognitive time maps for modeling and evaluating trust dynamics in the virtual enterprises. Expert Syst. Appl. 35(4), 1583–1592 (2008)

    Article  Google Scholar 

  15. Song, H.J., Miao, C.Y., Wuyts, R., Shen, Z.Q., D’Hondt, M., Catthoor, F.: An extension to fuzzy cognitive maps for classification and prediction. IEEE Trans. Fuzzy Syst. 19(1), 116–135 (2011)

    Article  Google Scholar 

  16. Ruan, D., Hardeman, F., Mkrtchyan, L.: Using belief degreedistributed fuzzy cognitive maps in nuclear safety culture assessment. In: Proceedings of Annual Meeting North American Fuzzy Information Processing Society, pp. 1–6 (2011)

    Google Scholar 

  17. Chunying, Z., Lu, L., Dong, O., Ruitao, L.: Research of rough cognitive map model. In: Shen, G., Huang, X. (eds.) ECWAC 2011, Part II. CCIS, vol. 144, pp. 224–229. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20370-1_37

    Chapter  Google Scholar 

  18. Acampora, G., Loia, V., Vitiello, A.: Distributing emotional services in ambient intelligence through cognitive agents. Serv. Oriented Comput. Appl. 5(1), 17–35 (2011)

    Article  Google Scholar 

  19. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97, 273–324 (1997)

    Article  Google Scholar 

  20. Fleuret, F.: Fast binary feature selection with conditional mutual information Mach. Learn. Res. 5, 1531–1555 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3, 1289–1306 (2003)

    MATH  Google Scholar 

  22. Javed, K., Babri, H.A., Saeed, M.: Feature selection based on class-dependent densities for high-dimensional binary data. IEEE Trans. Knowl. Data Eng. 24, 465–477 (2010)

    Article  Google Scholar 

  23. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005)

    Article  Google Scholar 

  24. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a new algorithm. In: Proceedings of Tenth National Conference on Artificial Intelligence, pp. 129–134 (1992)

    Google Scholar 

  25. Acuna, E., Coaquira, F., Gonzalez, M.: A comparison of feature selection procedures for classifier based on kernel density estimation. In: Proceedings of the International Conference on Computer, Communication and Control Technologies, vol. 1, pp. 468–472 (2003)

    Google Scholar 

  26. Stoppiglia, H., Dreyfus, G., Dubios, R., Oussar, Y.: Ranking a random feature for variable and feature selection. J. Mach. Learn. Res. 3, 1399–1414 (2003)

    MATH  Google Scholar 

  27. Narendra, P., Fukunaga, K.: A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 6, 917–922 (1977)

    Article  Google Scholar 

  28. Setiono, R., Liu, H.: Neural-network feature selector. IEEE Trans. Neural Netw. 8, 654–662 (1997)

    Article  Google Scholar 

  29. Romero, E., Sopena, J.M.: Performing feature selection with multilayer perceptrons. IEEE Trans. Neural Netw. 19, 431–441 (2008)

    Article  Google Scholar 

  30. Stracuzzi, D.J., Utgoff, P.E.: Randomized variable elimination. J. Mach. Learn. Res. 5, 1331–1364 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Wu, D., Zhou, Z., Feng, S., He, Y.: Uninformation variable elimination and successive projections algorithm in mid-infrared spectra wavenumber selection. Image Signal Process. (2009)

    Google Scholar 

  32. Centner, V., Massart, D.-L., de Noord, O.E., de Jong, S., Vandeginste, B.M., Sterna, C.: Elimination of uninformative variables for multivariate calibration. Anal. Chem. 68, 3851–3858 (1996)

    Article  Google Scholar 

  33. Alsberg, B.K., Woodward, A.M., Winson, M.K., Rowl, J.J., Kell, D.B.: Variable selection in wavelet regression models. Anal. Chim. Acta 368, 29–44 (1998)

    Article  Google Scholar 

  34. Caruana, R., de Sa, V.: Benefitting from the variables that variable selection discards. J. Mach. Learn. Res. 3, 1245–1264 (2003)

    MATH  Google Scholar 

  35. Peng, Y., Xuefeng, Z., Jianyong, Z., Yunhong, X.: Lazy learner text categorization algorithm based on embedded feature selection. J. Syst. Eng. Electron. 20, 651–659 (2009)

    Google Scholar 

  36. Law, M.H., Figueiredo, M.A.T., Jain, A.K.: Simultaneous feature selection and clustering using mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1154–1166 (2004)

    Article  Google Scholar 

  37. Zhao, Z., Liu, H.: Semi-supervised feature selection via spectral analysis. In: Proceedings of the 7th SIAM Data Mining Conference (SDM), 641–646 (2007)

    Google Scholar 

  38. Peralta, D., del Río, S., Ramírez-Gallego, S., Triguero, I., Benitez, J.M., Herrera, F.: Evolutionary feature selection for big data classification: a mapreduce approach

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Judy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Judy, M.V., Soman, G. (2018). Parallel Fuzzy Cognitive Map Using Evolutionary Feature Reduction for Big Data Classification Problem. In: Mandal, J., Sinha, D. (eds) Social Transformation – Digital Way. CSI 2018. Communications in Computer and Information Science, vol 836. Springer, Singapore. https://doi.org/10.1007/978-981-13-1343-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1343-1_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1342-4

  • Online ISBN: 978-981-13-1343-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics