Skip to main content

Part of the book series: Research for Development ((REDE))

Abstract

The low-gravity environment aboard the space offers an advanced platform to prepare materials with improved properties as compared with their terrestrial counterparts, and allows an in-depth understanding of crystal-growth-related phenomena that are masked by gravity on the earth. The main achievements in the melt growth of semiconductors under microgravity are listed below: (i) on the way towards high-quality semiconductors with chemical homogeneities on both the macroscopic and microscopic scales, the dependence of solute transport on the buoyancy-driven convection and Marangoni convection was better understood; (ii) the underlying mechanism of detached Bridgman growth was clarified based on the microgravity experiments, which in turn guided the ground-based crystal growth processes; (iii) new crystal growth techniques including the traveling liquidus-zone method and the vertical gradient freezing method were proposed and developed, and chemically homogeneous semiconductor alloys such as Ge1−xSix and InxGa1−xSb were successfully grown using these methods under microgravity. In this part, the main progresses in these areas are reviewed and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benz KW, Dold P (2002) Crystal growth under microgravity: present resultsand future prospects towards the International Space Station. J Cryst Growth 237:1638

    Article  ADS  Google Scholar 

  2. Chen NF, Zhong XR, Lin LY, Zhang M, Wang YS, Bai XW, Zhao J (2001) Comparison of field effect transistor characteristics between space-grown and earth-grown gallium arsenide single crystal substrates. Appl Phys Lett 78:479

    ADS  Google Scholar 

  3. Chen NF, Zhong XR, Lin LY, Xie X, Zhang M (2000) Semi-insulating GaAs grown in outer space. Mater Sci Eng B 75:134

    Article  Google Scholar 

  4. Kamotani Y, Matsumoto S, Yoda S (2007) Recent developments in oscillatory marangoni convection. EDMP 3:147

    Google Scholar 

  5. Ebnalwaled AA, Duffar T, Sylla L (2013) Dewetting and transport property enhancement: antimonide crystals for high performance electronic devices. Cryst Res Technol 48:236

    Article  Google Scholar 

  6. Tiller WA, Jackson KA, Rutter JW, Chalmers B (1953) The redistribution of solute atoms during the solidification of metals. Acta Met 1:428

    Article  Google Scholar 

  7. Smith VG, Tiller WA, Rutter JW (1955) A mathematical analysis of solute redistribution during solidification. Can J Phys 33:723

    Article  ADS  Google Scholar 

  8. Witt AF, Gatos HC, Lichtensteiger M, Lavine MC, Herman CJ (1975) Crystal growth and steady-state segregation under zero gravity: InSb. J Electrochem Soc 122:27

    Article  Google Scholar 

  9. Zhou YF, Li XY, Bai SQ, Chen LD (2010) Comparison of space- and ground-grown Bi2Se0.21Te2.79 thermoelectric crystals. J Cryst Growth 312:775

    Google Scholar 

  10. Witt AF, Gatos HC, Lichtensteiger M, Herman CJ (1978) Crystal growth and segregation under zero gravity: Ge. J Electrochem Soc 125:1832

    Article  Google Scholar 

  11. Bly JM, Kaforey ML, Matthiesen DH, Chait A (1997) Interface shape and growth rate analysis of Se/GaAs bulk crystals grown in the NASA crystal growth furnace (CGF). J Cryst Growth 174:220

    Article  ADS  Google Scholar 

  12. Gillies DC, Lehoczky SL, Szofran FR, Watring DA, Alexander HA, Jerman GA (1997) Effect of residual accelerations during microgravity directional solidification of mercury cadmium telluride on the USMP-2 mission. J Cryst Growth 174:101

    Article  ADS  Google Scholar 

  13. Strelov VI, Kuranova IP, Zakharov BG, Voloshin AE (2014) Crystallization in space: results and prospects. Crystallogr Rep 59:781

    Article  ADS  Google Scholar 

  14. Alexander JID, Garandet J-P, Favier J-J, Lizee A (1997) g-Jitter effects on segregation during directional solidification of tin-bismuth in the MEPHISTO furnace facility. J Cryst Growth 178:657

    Article  ADS  Google Scholar 

  15. Coriell SR, Boisvert RF, Rehm RG, Sekerka RF (1981) Lateral solute segregation during unidirectional solidification and inter-face instabilities during unidirectional solidification of a binary alloy. J Cryst Growth 54:167

    Article  ADS  Google Scholar 

  16. Griffin PR, Motkef S (1989) Influence of nonsteady gravity on natural convection during microgravity solidification of semiconductors: part I. J Appl Microgravity Technol 2:121

    Google Scholar 

  17. Alexander JID, Ouazzani J, Rosenberger F (1989) Analysis of the low gravity tolerance of Bridgman–Stockbarger crystal growth: part I. Steady and impulse accelerations. J Cryst Growth 97:285

    Google Scholar 

  18. Naumann RJ (1994) Modeling flows and solute redistribution resulting from small transverse accelerations in Bridgman growth. J Cryst Growth 142:253

    Article  ADS  Google Scholar 

  19. Derby JJ, Kwon Y, Pandy A, Sonda P, Yeckel A, June T, Müller G (2006) Developing quantitative, multiscale models for microgravity crystal growth. Ann N Y Acad Sci 1077:124

    Article  ADS  Google Scholar 

  20. Pandy A, Yeckel A, Reed M, Szeles C, Hainke M, Müller G, Derby JJ (2005) Analysis of the growth of cadmium zinc telluride in an electrodynamic gradient freeze furnace via a self-consistent, multi-scale numerical model. J Cryst Growth 276:133

    Article  ADS  Google Scholar 

  21. Derby JJ, Zhang N, Yeckel A (2013) Modeling insights on the melt growth of cadmium zinc telluride. J Cryst Growth 379:28

    Article  ADS  Google Scholar 

  22. Duhanian N, Marin C, Abadie J, Chaudet M, Dieguez E, Duffar T (1997) Chemical segregation and crystal crucible interaction during the growth of Ga0.8In0.2Sb in space. Microgravity Sci Technol XI/4:187

    Google Scholar 

  23. Duhanian N, Duffar T, Marin C, Dieguez E, Garandet JP, Dantan P, Guiffant G (2005) Experimental study of the solid–liquid interface dynamics andchemical segregation in concentrated semiconductor alloy Bridgman growth. J Cryst Growth 275:422

    Article  ADS  Google Scholar 

  24. Stelian C, Duffar T (2005) Numerical analysis of solute distribution and interface stabilization during experimental Bridgman growth of concentrated GaInSb alloys. J Cryst Growth 275:422

    Article  ADS  Google Scholar 

  25. Stelian C, Duffar T (2005) Growth of concentrated GaInSb alloys with improved chemical homogeneity at low and variable pulling rates. J Cryst Growth 275:e585

    Article  ADS  Google Scholar 

  26. Stelian C, Duffar T (2005) Modeling of a space experiment on Bridgman solidification of concentrated semiconductor alloy. J Cryst Growth 275:175

    Article  ADS  Google Scholar 

  27. Nakamura S, Hibiya T, Kakimoto K, Imaishi N, Nishizawa S, Hirata A, Mukai K, Yoda S, Morita TS (1997) Temperature fluctuations of the Marangoni flow in a liquid bridge of molten silicon under microgravity on board the TR-IA-4 rocket. J Cryst Growth 186:85

    Article  ADS  Google Scholar 

  28. Nakamura S, Hibiya T, Kakimoto K, Imaishi N, Yoda S, Nakamura T, Koyama M, Dold P, Benz KW (1999) Observation of periodic Marangoni convection in a molten silicon bridge on board the TR-IA-6 rocket. J Jpn Soc Microgravity Appl 16:99

    Google Scholar 

  29. Yano T, Nishino K, Kawamura H, Ueno I, Matsumoto S, Ohnishi M, Sakurai M (2011) Space experiment on the instability of Marangoni convection in large liquid bridge—MEIS-4: effect of Prandtl number. J Phys Conf Ser 327:012209

    Article  Google Scholar 

  30. Duffar T, Serrano MD, Lerin L, Santailler JL (1999) Marangoni convective effect during crystal growth in space. Cryst Res Technol 34:457

    Article  Google Scholar 

  31. Müller G, Neumann G, Matz H (1987) A two-Rayleigh-number model of buoyancy-driven convection in vertical melt growth configurations. J Cryst Growth 84:36

    Article  ADS  Google Scholar 

  32. Schweizer M, Cröll A, Dold P, Kaiser T, Lichtensteiger M, Benz KW (1999) Measurement of temperature fluctuations and microscopic growth rates in a silicon floating zone under microgravity. J Cryst Growth 203:500

    Article  ADS  Google Scholar 

  33. Lan CW, Chian JH (1999) Three-dimensional simulation of Marangoni flow and interfaces in floating-zone silicon crystal growth. J Cryst Growth 203:500

    Article  Google Scholar 

  34. Selver R (2005) Experiments on the transition from the steady to the oscillatory marangoni convection of a floating-zone under various cold wall temperatures and various ambient air temperature effects. Microgravity Sci Technol 17:25

    Article  ADS  Google Scholar 

  35. Rupp R, Müller G, Neumann G (1989) Three-dimensional time dependent modelling of the Marangoni convection in zone melting configurations for GaAs. J Cryst Growth 97:34

    Article  ADS  Google Scholar 

  36. Kamotani Y, Matsumoto S, Yoda S (2007) Recent developments in oscillatory Marangoni convection. FDMP Fluid Dyn Mater Process 3:147

    Google Scholar 

  37. Cröll A, Kaiser T, Schweizer M, Danilewsky AN, Lauer S, Tegetmeier A, Benz KW (1998) Floating-zone and floating-solution-zone growth of GaSb under microgravity. J Cryst Growth 191:365

    Article  ADS  Google Scholar 

  38. Nishinaga T, Ge P, Huo C, He J, Nakamura T (1997) Melt growth of striation and etch pit free GaSb under microgravity. J Cryst Growth 174:96

    Article  ADS  Google Scholar 

  39. Tillberg E, Carlberg T (1990) Semi-confined Bridgman growth of germanium crystals in microgravity. J Cryst Growth 99:1265

    Article  ADS  Google Scholar 

  40. Matthiesen DH, Wargo MJ, Motakef S, Carlson DJ, Nakos JS, Witt AF (1987) Dopant segregation during vertical Bridgman-Stockbarger growth with melt stabilization by strong axial magnetic-fields. J Cryst Growth 85:557

    Article  ADS  Google Scholar 

  41. Kang J, Fukuda T (2000) Growth exploration of compositionally uniform bulk semiconductors under a high magnetic field of 80000 Gauss. Mater Sci Eng B 75:149

    Article  Google Scholar 

  42. Yesilyurt S, Vujisic L, Motakef S, Szofran FR, Volz MP (1999) A numerical investigation of the effect of thermoelectromagnetic convection (TEMC) on the Bridgman growth of Ge1−xSix. J Cryst Growth 207:278

    Article  ADS  Google Scholar 

  43. Fripp AL, Debnam WJ, Rosch W, Chait A, Yao M, Szofran FR (2000) Melt stabilization of PbSnTe in a magnetic field. NASA Microgravity Mater Sci Conf

    Google Scholar 

  44. Cröll A, Szofran FR, Dold P, Benz KW, Lehoczky SL (1998) Floating-zone growth of silicon in magnetic fields II: strong static axial fields. J Cryst Growth 183:554

    Article  ADS  Google Scholar 

  45. Baumgartl J, Müller G (1996) The use of magnetic fields for damping the action of gravity fluctuations (g-jitter) during crystal growth under microgravity. J Cryst Growth 169:582

    Article  ADS  Google Scholar 

  46. Ma N, Walker JS (1997) Magnetic damping of buoyancy convection during semiconductor crystal growth in microgravity: spikes of residual acceleration. Phys Fluids 9:1182

    Article  ADS  Google Scholar 

  47. Herrmann F, Müller G (1995) Growth of 20 mm diameter GaAs crystals by the Floating Zone technique with controlled as-vapour pressure under microgravity. J Cryst Growth 156:350

    Article  ADS  Google Scholar 

  48. Fischer B, Friedrich J, Weimann H, Müller G (1999) The use of time-dependent magnetic fields for control of convective flows in melt growth configurations. J Cryst Growth 189:170

    Article  ADS  Google Scholar 

  49. Barmin IV, Senchenkov AS, Greif A, Wunderwald U, Cröll A, Lyubimova T (2009) Application of rotating magnetic fields to crystal growth under microgravity (Experiments on Foton-M3). Magnetohydrodynamics 45:325

    Google Scholar 

  50. Feonychev A, Bondareva N (2002) Crystal growth under microgravity conditions with using of magnetic fields. In: 34th COSPAR scientific assembly, the second world space congress, Houston

    Google Scholar 

  51. Dold P, Benz KW (1997) Modification of fluid flow and heat transport in vertical Bridgman configurations by rotating magnetic fields. Cryst Res Technol 32:51

    Article  Google Scholar 

  52. Lan CW, Tu CY (2002) Three-dimensional analysis of flow and segregation control by slow rotation for Bridgman crystal growth in microgravity. J Cryst Growth 237:1881

    Article  ADS  Google Scholar 

  53. Lan CW (1999) Effects of ampoule rotation on flows and dopant segregation in vertical Bridgman crystal growth. J Cryst Growth 197:983

    Article  ADS  Google Scholar 

  54. Lan CW (1999) Effects of centrifugal acceleration on the flows and segregation in vertical Bridgman crystal growth with steady ampoule rotation. J Cryst Growth 229:595

    Article  ADS  Google Scholar 

  55. Churilov A, Ostrogorsky AG, Volz MP (2006) Solidification using a baffle in sealed ampoules: ground-based experiments. J Cryst Growth 295:20

    Article  ADS  Google Scholar 

  56. Ostrogorsky AG (1990) Numerical simulations of single crystal growth by submerged heater method. J Cryst Growth 104:233

    Article  ADS  Google Scholar 

  57. Ostrogorsky AG, Sell HJ, Scharl S, Müller G (1993) Convection and segregation during growth of Ge and InSb crystals by the submerged heater method. J Cryst Growth 128:201

    Article  ADS  Google Scholar 

  58. Dutta PS, Ostrogorsky AG (1993) Segregation of tellurium in GaSb single crystals and associated diffusion coefficient in the solute layer. J Cryst Growth 197:749

    Article  ADS  Google Scholar 

  59. Dutta PS, Ostrogorsky AG (2000) Segregation of Ga in Ge and InSb in GaSb. J Cryst Growth 217:360

    Article  ADS  Google Scholar 

  60. Ostrogorsky AG, Marin C, Churilov A, Volz MP, Bonner WA, Duffar T (2008) Reproducible Te-doped InSb experiments in microgravity science glovebox at the International Space Station. J Cryst Growth 310:364

    Article  ADS  Google Scholar 

  61. Ostrogorsky AG, Marin C, Volz MP, Duffar T (2009) Initial transient in Zn-dop ed InSb grown in microgravity. J Cryst Growth 311:3143

    Article  Google Scholar 

  62. Cröll A, Volz MP (2009) Detached Bridgman growth—a standard crystal growth method with a new twist. MRS Bull 34:245

    Article  Google Scholar 

  63. Yue JT, Voltmer FW (1975) Influence of gravity-free solidification on solute microsegregation. J Cryst Growth 29:329

    Article  ADS  Google Scholar 

  64. Regel LL, Wilcox WR (1998) Detached solidification in microgravity—a review. Microgravity Sci Technol XI/4:152

    Google Scholar 

  65. Dold P, Szofran FR, Benz KW (2002) Detached growth of gallium doped germanium. J Cryst Growth 234:91

    Article  ADS  Google Scholar 

  66. Schweizer M, Cobb SD, Volz MP, Szoke J, Szofran FR (2002) Defect density characterization of detached-grown germanium crystals. J Cryst Growth 235:161

    Article  ADS  Google Scholar 

  67. Sylla L, Fauler A, Fiederle M, Duffar T, Dieguez E, Zanotti L, Zappettini A, Roosen G (2008) Dewetting during the crystal growth of (Cd, Zn)Te: in under microgravity. In: Nuclear science symposium conference record

    Google Scholar 

  68. Wang YZ, Regel LL, Wilcox WR (2000) Influence of contact angle, growth angle and melt surface tension on detached solidification of InSb. J Cryst Growth 209:175

    Article  ADS  Google Scholar 

  69. Duffar T, Dusserre P, Picca F, Lacroix S, Giacometti N (2000) Bridgman growth without crucible contact using the dewetting phenomenon. J Cryst Growth 211:434

    Article  ADS  Google Scholar 

  70. Palosz W, Volz MP, Cobb S, Motakef S, Szofran FR (2005) Detached growth of germanium by directional solidification. J Cryst Growth 277:104

    Article  ADS  Google Scholar 

  71. Sangiorgi R, Muolo ML, Chatain D, Eustathopoulos N (1988) Wettability and work of adhesion of nonreactive liquid metals on silica. J Am Ceram Soc 71:742

    Article  Google Scholar 

  72. Kaiser N, Cröll A, Szofran FR, Cobb SD, Volz M, Dold P, Benz KW (2001) Determination of wetting angles of germanium melts using the sessile drop technique. J Cryst Growth 231:448

    Article  ADS  Google Scholar 

  73. Zemskov VS, Raukham MR, Barnim IV, Senchenkov AS, Shulpina IL, Sorokin LM (1983) Special features of solidification of alloyed single crystals of indium antimonide in zero gravity conditions. Fizika i Khimiya Obrabotky Materialov 17:56

    Google Scholar 

  74. Tegetmeier A (1995) Oberflächenspannung und Wachstumswinkel, zwei wichtige Parameter der Schmelzzonenzüchtung. Dissertation thesis, AlbertLudwigs- Universität

    Google Scholar 

  75. Shetty R, Balasubramanian R, Wilcox WR (1990) Surface tension and contact angle of molten semiconductor compounds: I. Cadmium telluride. J Cryst Growth 100:51

    Article  ADS  Google Scholar 

  76. Mukai K, Yuan Z (2000) Wettability of ceramics with molten silicon at temperatures ranging from 1693 K to 1773 K. Mater Trans JIM 41:338

    Article  Google Scholar 

  77. Duffar T, Abadie J (1996) Wetting of InSb melts on crucibles in weightlessness—results of the Texus 32/TEM 01–4 experiment. Microgravity Sci Technol IX

    Google Scholar 

  78. Harter I, Dusserre P, Duffar T, Nabot J-P, Eustathopoulos N (1993) Wetting of III–V melts on crucible materials. J Crys Growth 131:157

    Article  ADS  Google Scholar 

  79. Wald FV (1981) Crystals: growth, properties and applications, vol 5. Springer, New York

    Google Scholar 

  80. Fiederle M, Duffar T, Garandet JP, Babentsov V, Fauler A, Benz KW, Dusserre P, Corregidor V, Dieguez E, Delaye P, Roosen G, Chevrier V, Launay JC (2004) J Cryst Growth 267:429

    Article  ADS  Google Scholar 

  81. Yeckel A, Stelian C, Derby JJ (2009) Heat transfer, capillarity, and phase change during detached Bridgman crystal growth. In: Thermodynamics of phase changes (EUROTHERM-84), Namur, Belgium

    Google Scholar 

  82. Yeckel A, Daoutidis P, Derby JJ (2012) Stabilizing detached Bridgman melt crystal growth: proportional-integral feedback control. J Cryst Growth 356:33

    Article  ADS  Google Scholar 

  83. Yeckel A, Daoutidis P, Derby JJ (2012) Stabilizing detached Bridgman melt crystal growth: model-based nonlinear feedback control. J Cryst Growth 361:16

    Article  ADS  Google Scholar 

  84. Szofran FR, Cobb SD, Cröll A, Dold P, Kaiser N, Kerat U, Benz KW, Motakef S, Volz MP, Schweizer M, Vujisic L, Walker JS, Pettigrew P (2000) Reduction of defects in germanium-silicon (RDGS). In: NASAMSFC, Huntsville, AL, Science Requirements Document (SRD), 19–20 December 2000

    Google Scholar 

  85. Duffar T, Dusserre P, Giacometti N (2001) Growth of GaSb single crystals by an improved dewetting process. J Crys Growth 223:69

    Article  ADS  Google Scholar 

  86. Mauk MG, Andreev VM (2003) GaSb-related materials for TPV cells. Semicond Sci Tehnol 18:S191

    Article  ADS  Google Scholar 

  87. Wang XW, Lee H, Lan YC, Zhu GH, Joshi G, Wang DZ, Yang J, Muto AJ, Tang MY, Klatsky J, Song S, Dresselhaus MS, Chen G, Ren ZF (2008) Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl Phys Lett 93:193121

    Article  ADS  Google Scholar 

  88. Kinoshita K, Yoda S (2011) Growth of homogeneous semiconductor mixed crystals by the traveling liquidus-zone method. J Cryst Growth 318:1026

    Article  ADS  Google Scholar 

  89. Kinoshita K, Ogata Y, Adachi S, Koshikawa N, Yoda S (2005) Excellent compositional homogeneity in In0.3Ga0.7As crystals grown by the traveling liquids-zone (TLZ) method. Microgravity Sci Technol 16:71

    Article  ADS  Google Scholar 

  90. Kinoshita K et al (2015) Growth of 2 inch Si0.5Ge0.5 bulk single crystals. Jpn J Appl Phys 54:04DH03

    Google Scholar 

  91. Kinoshita K et al (2012) Homogeneous Si0.5Ge0.5 bulk crystal growth as substrates for strained Ge thin films by the traveling liquidus-zone method. Thin Solid Films 520:3279

    Article  ADS  Google Scholar 

  92. Kinoshita K et al (2011) Homogeneous SiGe crystal growth in microgravity by the travelling liquidus-zone method. J Phys Conf Ser 327:012017

    Article  Google Scholar 

  93. Konoshita K et al (2015) Compositional uniformity of a Si0.5Ge0.5 crystal grown on board the International Space Station. J Cryst Growth 419:47

    Google Scholar 

  94. Abe K et al (2014) Numerical simulations of SiGe crystal growth by the traveling liquidus-zone method in a microgravity environment. J Cryst Growth 402:71

    Article  ADS  Google Scholar 

  95. Tsuruta T, Hayakawa Y, Kumagawa M (1988) Effect of ultrasonic vibrations on the growth of InxGa1−xSb mixed-crystals. Jpn J Appl Phys 27:47

    Article  ADS  Google Scholar 

  96. Tsuruta T, Hayakawa Y, Kumagawa M (1989) Effect of ultrasonic vibrations on the growth of InxGa1−xSb mixed-crystals (ii). Jpn J Appl Phys 28:36

    Article  Google Scholar 

  97. Tsuruta T et al (1992) Effect of ultrasonic vibrations on the growth of InxGa1−xSb mixed-crystals (iii). Jpn J Appl Phys 31:23

    Article  Google Scholar 

  98. Tanaka A et al (2000) Multi-step pulling of GaInSb bulk crystal from ternary solution. J Cryst Growth 209:625

    Article  ADS  Google Scholar 

  99. Dutta PS, Ostrogorsky AG (1998) Suppression of cracks in InxGa1−xSb crystals through forced convection in the melt. J Cryst Growth 194:1

    Article  ADS  Google Scholar 

  100. Kozhemyakin GN (2000) Indium inhomogeneity in InxGa1−xSb ternary crystals grown by floating crucible Czochralski method. J Cryst Growth 220:239

    Article  Google Scholar 

  101. Stelian C et al (2005) Growth of concentrated GaInSb alloys with improved chemical, homogeneity at low and variable pulling rates. J Cryst Growth 283:124

    Article  ADS  Google Scholar 

  102. Stelian C et al (2004) Solute segregation in directional solidification of GaInSb concentrated alloys under alternating magnetic fields. J Cryst Growth 266:207

    Article  ADS  Google Scholar 

  103. Stelian C et al (2005) Bridgman growth of concentrated GaInSb alloys with improved compositional uniformity under alternating magnetic fields. J Cryst Growth 275:E1571

    Article  Google Scholar 

  104. Yu D et al (2016) A review on InGaSb growth under microgravity and terrestrial conditions towards future crystal growth project using Chinese Recovery Satellite SJ-10. Microgravity Sci Technol 28:143

    Article  ADS  Google Scholar 

  105. Murakami N et al (2008) Growth of homogeneous InGaSb ternary alloy semiconductors on InSb seed. J Cryst Growth 310:1433

    Article  ADS  Google Scholar 

  106. Hayakawa Y et al (2008) In situ observation of composition profiles in the solution by X-ray penetration method. J Cryst Growth 310:1487

    Article  ADS  Google Scholar 

  107. Rajesh G et al (2010) In-situ observations of dissolution process of GaSb into InSb melt by X-ray penetration method. J Cryst Growth 312:2677

    Article  ADS  Google Scholar 

  108. Sakata K et al (2014) Thermal properties of molten InSb, GaSb, and InxGa1−xSb alloy semiconductor materials in preparation for crystal growth experiments on the International Space Station. Adv Space Res 53:689

    Article  ADS  Google Scholar 

  109. Inatomi Y et al (2015) Growth of InxGa1−xSb alloy semiconductor at the International Space Station (ISS) and comparison with terrestrial experiments. npj Microgravity 1:15011

    Google Scholar 

  110. Kumar N et al (2016) Investigation of directionally solidified InGaSb ternary alloys from Ga and Sb faces of GaSb(111) under prolonged microgravity at the International Space Station. npj Microgravity 2:16026

    Google Scholar 

  111. Kazuhiko O et al (1997) Melt mixing of the 0.3In/0.7GaSb/0.3Sb solid combination by diffusion under microgravity. Jpn J Appl Phys 36:3613

    Google Scholar 

  112. Mirsandi H et al (2015) A numerical study on the growth process of InGaSb crystals under microgravity with interfacial kinetics. Microgravity Sci Technol 27:313–320

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Yin or Xingwang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, Z., Zhang, X., Wang, W., Li, X., Yu, J. (2019). Melt Growth of Semiconductor Crystals Under Microgravity. In: Hu, W., Kang, Q. (eds) Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-1340-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1340-0_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1339-4

  • Online ISBN: 978-981-13-1340-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics