Skip to main content

Geochemical Model for Rapid Carbonate Precipitation of Travertines

  • Chapter
  • First Online:
Geomicrobiological Properties and Processes of Travertine

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

In the last chapter, we demonstrate the daily processes of the sub-mm-scale lamination. When favorable geochemical and hydrological conditions sustain, travertine can grow at a rate of tens of centimeters per year and tens of meters per a thousand years. Our founding strongly supports the previous statement that one of the most notable features of travertine is its rapid growth (or carbonate precipitation) rate (Kitano 1963; Folk et al. 1985; Pentecost 2005). In addition, recognition of the daily lamination enables to determine the growth rate of travertine that is enormous in comparison with the growth rate for tufa in non-hydrothermal karst settings (Ford and Pedley 1996). Andrews (2006) suggested that the tufa growth rate seldom exceeds 10 mm/year, and comprehensive studies in southwestern Japan revealed that the rate ranges from 3 to 8 mm/year (Kano et al. 2007; Kawai et al. 2009). Growth rate of a typical travertine is two orders of magnitude higher than that of a typical tufa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews JE (2006) Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth-Sci Rev 75:85–104

    Article  Google Scholar 

  • Arenas C, Vázquez-Urbez M, Auqué L, Sancho C, Osácar C, Pardo G (2014) Intrinsic and extrinsic controls of spatial and temporal variations in modern fluvial tufa sedimentation: a thirteen-year record from a semi-arid environment. Sedimentology 61:90–132

    Article  Google Scholar 

  • Arp G, Thiel V, Reimer A, Michaelis W, Reitner J (1999a) Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sediment Geol 126:159–176

    Article  Google Scholar 

  • Arp G, Reimer A, Reitner J (1999b) Calcification in cyanobacterial biofilms of alkaline salt lakes. Eur J Phycol 34:393–403

    Article  Google Scholar 

  • Baker A, Smart PL (1995) Recent flowstone growth rates: field measurements in comparison to theoretical predictions. Chem Geol 122:121–128

    Article  Google Scholar 

  • Baker A, Genty D, Dreybrodt W, Grapes J, Mockler NJ (1998) Testing theoretically predicted stalagmite growth rate with recent annually laminated stalagmites: implications for past stalagmite deposition. Geochim Cosmochim Acta 62:393–404

    Article  Google Scholar 

  • Bono P, Dreybrodt W, Ercole S, Percopo C, Vosbeck K (2001) Inorganic calcite precipitation in Tartare karstic spring (Lazio, central Italy): field measurements and theoretical prediction on depositional rates. Environ Geol 41:305–313

    Article  Google Scholar 

  • Buhmann D, Dreybrodt W (1985) The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas I Open-System. Chem Geol 48:189–211

    Article  Google Scholar 

  • Capezzuoli E, Gandin A, Pedley M (2014) Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of the art. Sedimentology 61:1–21

    Article  Google Scholar 

  • Chafetz HS, Guidry SA (1999) Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: bacterial vs. abiotic precipitation. Sediment Geol 126:57–74

    Article  Google Scholar 

  • Chafetz HS, Rush PF, Utech NM (1991) Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system. Sedimentology 38:107–126

    Article  Google Scholar 

  • Chou L, Garrels RM, Wollast R (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem Geol 78:269–282

    Article  Google Scholar 

  • Dreybrodt W (1981) The kinetics of calcite precipitation from thin films of calcareous solutions and growth of speleothems: revisited. Chem Geol 32:237–245

    Article  Google Scholar 

  • Dreybrodt W, Buhmann D (1991) A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chem Geol 90:107–122

    Article  Google Scholar 

  • Dreybrodt W, Buhmann D, Michaelis J, Usdowski E (1992) Geochemically controlled calcite precipitation by CO2 outgassing: field measurements of precipitation rates in comparison to theoretical predictions. Chem Geol 97:285–294

    Article  Google Scholar 

  • Dreybrodt W, Mandry EB, Ringer S (1997) Precipitation kinetics of calcite in the system CaCO3-H2O-CO2: the conversion to CO2 by the slow process H+ + HCO3 -> CO2 + H2O as a rate limiting step. Geochim Cosmochim Acta 61:3897–3904

    Article  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    Article  Google Scholar 

  • Folk RL, Chafetz HS, Tiezzi PA (1985) Bizarre forms of depositional and diagenetic calcite in hot-spring travertines, central Italy. In: Schneidermann N, Harris PM (eds) Carbonates cements, Soc Econom Paleont Mineral, vol 36. Spec Public, Tulsa, pp 349–369

    Chapter  Google Scholar 

  • Ford TD, Pedley HM (1996) A review of tufa and travertine deposits of the world. Earth-Sci Rev 41:117–175

    Article  Google Scholar 

  • Gautret P, Trichet J (2005) Automicrites in modern cyanobacterial stromatolitic deposits of Rangiroa, Tuamotu Archipelago, French Polynesia: biochemical parameters underlying their formation. Sediment Geol 178:55–73

    Article  Google Scholar 

  • Gradzinski M (2010) Factors controlling growth of modern tufa: results of a field experiment. In: Pedley HM, Rogerson M (eds) Tufa and speleothems: unrevealing the microbial and physical controls. Geol Soc London Spec Publ 336, pp 143–191

    Google Scholar 

  • Guo L, Riding R (1998) Hot-spring travertine facies and sequences, Late Pleistocene, Rapolano Terme, Italy. Sedimentology 45:163–180

    Article  Google Scholar 

  • Herman JS, Lorah MM (1987) CO2 outgassing and calcite precipitation in Falling Spring Creek, Virginia, U.S.A. Chem Geol 62:251–262

    Article  Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JJC (2001) Carbon dioxide and methane evasion from a temperate peatland stream. Limnol Oceanogr 46:847–857

    Article  Google Scholar 

  • Inskeep WP, Bloom PR (1985) An evaluation of rate equations for calcite precipitation kinetics at pCO2 less than 0.01 atm and pH greater than 8. Geochim Cosmochim Acta 49:2165–2180

    Article  Google Scholar 

  • Jones B, Renaut RW (1995) Noncrystallographic calcite dendrites from hot-spring deposits at Lake Bogoria, Kenya. J Sed Res A65:154–169

    Google Scholar 

  • Jones B, Renaut RW (1998) Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley. J Sed Res 68:913–927

    Article  Google Scholar 

  • Jones B, Renaut RW (2008) Cyclic development of large, complex, calcite dendrite crystals in the Clinton travertine, Interior British Columbia, Canada. Sediment Geol 203:17–35

    Article  Google Scholar 

  • Jones B, Renaut RW, Owen RB, Torfason H (2005) Growth patterns and implications of complex dendrites in calcite travertines from Lýsuhóll, SnÌfellsnes, Iceland. Sedimentology 52:1277–1301

    Google Scholar 

  • Kano A, Ihara T, Naka T, Sakuma K (1999) Phenomena considered from hydrochemical data in a tufa-depositing stream: a case study in Hokubo, Okayama Prefecture, Japan. Earth Sci (Chikyu-kagaku) 53:374–385

    Google Scholar 

  • Kano A, Matsuoka J, Kojo T, Fujii H (2003) Origin of annual laminations in tufa deposits, southwest Japan. Palaeogeogr Palaeoclimatol Palaeoecol 191:243–262

    Article  Google Scholar 

  • Kano A, Hagiwara R, Kawai T, Hori M, Matsuoka J (2007) Climatic condition and hydrological change recorded in a high-resolution stable-isotope profile of a recent laminated tufa on a subtropical island, southern Japan. J Sed Res 77:59–67

    Article  Google Scholar 

  • Kawai T, Kano A, Matsuoka J, Ihara T (2006) Seasonal variation in water chemistry and depositional processes in a tufa-bearing stream in SW-Japan – based on five-year monthly observation. Chem Geol 232:33–53

    Article  Google Scholar 

  • Kawai T, Kano A, Hori M (2009) Geochemical and hydrological controls on biannual lamination of tufa deposits. Sediment Geol 213:41–50

    Article  Google Scholar 

  • Kitano Y (1963) Geochemistry of calcareous deposits found in hot springs. J Earth Sci Nagoya Univ 1:68–100

    Google Scholar 

  • Liu Z, Svensson U, Dreybrodt W, Yuan D, Buhmann D (1995) Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: field measurements and theoretical prediction of deposition rate. Geochim Cosmochim Acta 59:3087–3097

    Article  Google Scholar 

  • Liu Z, Li H, You C, Wan N, Sun H (2006) Thickness and stable isotopic characteristics of modern seasonal climate-controlled sub-annual travertine laminas in a travertine-depositing stream at Baishuitai, SW China: implications for paleoclimate reconstruction. Environ Geol 51:257–265

    Article  Google Scholar 

  • Liu Z, Sun H, Baoying L, Xiangling L, Wenbing Y, Cheng Z (2010) Wet-dry seasonal variations of hydrochemistry and carbonate precipitation rates in a travertine-depositing canal at Baishuitai, Yunnan, SW China: implications for the formation of biannual laminae in travertine and for climatic reconstruction. Chem Geol 273:258–266

    Article  Google Scholar 

  • Morse JW, Arvidson RS (2002) The dissolution kinetics of major sedimentary carbonate minerals. Earth-Sci Rev 58:51–84

    Article  Google Scholar 

  • Nancollas GH, Reddy MM (1971) The crystallization of calcium carbonate, II. Calcite growth mechanism. J Colloid Interface Sci 37:824–829

    Article  Google Scholar 

  • Okumura T, Takashima C, Shiraishi F, Nishida S, Yukimura K, Naganuma T, Koike H, Arp G, Kano A (2011) Microbial processes forming daily lamination in an aragonite travertine, Nagano-yu hot spring, southwest Japan. Geomicrobiol J 28:135–148

    Article  Google Scholar 

  • Okumura T, Takashima C, Shiraishi F, Akmaluddin KA (2012) Textural transition in an aragonite travertine formed under various flow conditions at Pancuran Pitu, Central Java, Indonesia. Sediment Geol 265–266:195–209

    Article  Google Scholar 

  • Okumura T, Takashima C, Shiraishi F, Nishida S, Kano A (2013a) Processes forming daily lamination in a microbe-rich travertine under low flow condition at the Nagano-yu hot spring, southwestern Japan. Geomicrobiol J 30:910–927

    Article  Google Scholar 

  • Okumura T, Takashima C, Kano A (2013b) Textures and processes of laminated travertines formed by unicellular cyanobacteria in Myoken hot spring, southwestern Japan. Island Arc 22:410–426

    Article  Google Scholar 

  • Pentecost A (2005) Travertine. Springer, Berlin, p 445

    Google Scholar 

  • Plummer LN, Wigley TML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2-water systems at 5°C to 60°C and 1.0 atm CO2. Am J Sci 278:179–216

    Article  Google Scholar 

  • Renaut RW, Jones B (2011) Controls on aragonite and calcite precipitation in hot spring travertines at Chemurkeu, Lake Bogoria, Kenya. Can J Earth Sci 34:801–818

    Article  Google Scholar 

  • Rogerson M, Pedley HM, Kelham A, Wadhawan JD (2014) Linking mineralisation process and sedimentary product in terrestrial carbonates using a solution thermodynamic. Earth Surf Dyn 2:197–216

    Article  Google Scholar 

  • Romanov D, Kaufmann G, Dreybrodt W (2008) Modeling stalagmite growth by first principles of chemistry and physics of calcite precipitation. Geochim Cosmochim Acta 72:423–437

    Article  Google Scholar 

  • Shiraishi F, Reimer A, Bissett A, de Beer D, Arp G (2008) Microbial effects on biofilm calcification, ambient water chemistry and stable isotope records (Westerhöfer Bach, Germany). Palaeogeogr Palaeoclimatol Palaeoecol 262:91–106

    Article  Google Scholar 

  • Shiraishi F, Okumura T, Takahashi Y, Kano A (2010) Influence of microbial photosynthesis on tufa stromatolite formation and ambient water chemistry, SW Japan. Geochim Cosmochim Acta 74:5289–5304

    Article  Google Scholar 

  • Takashima C, Kano A (2005) Depositional processes of travertine developed at Shionoha hot spring, Nara Prefecture, Japan. J Geol Soc Japan 111:751–764

    Article  Google Scholar 

  • Takashima C, Kano A (2008) Microbial processes forming daily lamination in a stromatolitic travertine. Sediment Geol 208:114–119

    Article  Google Scholar 

  • Takashima C, Okumura T, Nishida S, Koike H, Kano A (2011) Microbial control to lamina formation in a travertine at Crystal Geyser, Utah. In: Reitner J, Queric N-V, Arp G (eds) Advances in stromatolite geobiology. Lecture notes in earth science 131, pp 123–133

    Google Scholar 

  • Tans PP, Fang IY, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382

    Article  Google Scholar 

  • Wanninkhof R, Mulholland PJ, Elwood JW (1990) Gas-exchange rates for a 1st-order stream determined with deliberate and natural tracers. Water Resour Res 26:1621–1630

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kano, A., Okumura, T., Takashima, C., Shiraishi, F. (2019). Geochemical Model for Rapid Carbonate Precipitation of Travertines. In: Geomicrobiological Properties and Processes of Travertine. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1337-0_6

Download citation

Publish with us

Policies and ethics