Skip to main content

Demand Forecasting of the Short-Lifecycle Dairy Products

  • Chapter
  • First Online:
Understanding the Role of Business Analytics

Abstract

Predictions of future market demands for dairy products are important determinants in developing marketing strategies and farm-production planning decisions. For business operations in dairy industry, the accuracy of the forecast is of crucial importance because of the volatile demand pattern, influenced by an environment of rapid and dynamic response. The current study aims to compare the forecasting models like moving average, regression, multiple regression, and the Holt–Winters model based on accuracy measures, applied to demand forecasting of a time series formed by a group of perishable dairy products in milk processing industry. Further, the metric analysis of various error-measuring techniques is also applied to select the least error-producing model for such products as a performance measure. Findings of the study will help dairy industry to achieve high order fill rate, good inventory control as well as high profits. However, the selection of these models depends upon the knowledge, availability of data, and context of forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

F t :

Forecasted demand for the period ‘t

Y t :

Actual demand for the period ‘t

u i :

Level factor for the period ‘t

v i :

Trend factor for the period ‘t

S i :

Seasonal factor for the period ‘t

α :

Smoothing constant for demand or level

β :

Smoothing constant for trend

γ :

Smoothing constant for seasonality

MAD:

Mean absolute deviation

MSE:

Mean square error

RMSE:

Root-mean-square error

MAPE:

Mean absolute percentage error

M.A.:

Moving average

H-W:

Holt and Winters

References

  • Amorim, P., Alem, D., & Lobo, B. A. (2013). Risk management in production planning of perishable goods. Industrial and Engineering Chemistry Research, 52(49), 17538–17553.

    Article  Google Scholar 

  • Assis, M. V. O. D, Carvalho, L. F, Rodrigues, J. J., & Proença, M. L. (2013). Holt-Winters statistical forecasting and aco metaheuristic for traffic characterization. In Communication QoS, Reliability and Modeling Symposium, 978-1-4673-3122-7/13.

    Google Scholar 

  • Bhardwaj, A., Mor, R. S., Singh, S., & Dev, M. (2016). An investigation into the dynamics of supply chain practices in dairy industry: A pilot study. In Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management Detroit, Michigan, USA, September 23–25, 2016 (pp. 1360–1365).

    Google Scholar 

  • Dhahri, I., & Chabchoub, H. (2007). Nonlinear goal programming models quantifying the bullwhip effect in supply chain based on ARIMA parameters. European Journal of Operational Research, 177(3), 1800–1810.

    Article  Google Scholar 

  • García, J. A., Garrido, G. P., & Prado, J. C. (2014). Packaging as source of efficient and sustainable advantages in supply chain management: an analysis of milk cartons. International Journal of Production Management, 2(1), 15–22.

    Article  Google Scholar 

  • Ghosh, S. (2008). Univariate time-series forecasting of monthly peak demand of electricity in northern India. International Journal of Indian Culture and Business Management, 1(4), 466–474.

    Article  Google Scholar 

  • Gupta, S. (2015). ECMS based hybrid algorithm for energy management in parallel hybrid electric vehicles. HCTL Open International Journal of Technology Innovations and Research, 14, 1–12.

    Google Scholar 

  • Harsoor, A. S., & Patil, A. (2015). Forecast of sales of Walmart store using big data applications. International Journal of Research in Engineering and Technology, 4(6), 51–59.

    Article  Google Scholar 

  • Hassan, M., Eldin, A. B., & Ghazali, A. E. (2015). A decision support system for subjective forecasting of new product sales. International Journal of Computer Applications, 126(2), 25–30.

    Article  Google Scholar 

  • Jraisat, L., Gotsi, M., & Bourlakis, M. (2013). Drivers of information sharing and export performance in the Jordanian agri-food export supply chain. International Marketing Review, 30(4), 323–356.

    Article  Google Scholar 

  • Kaloxylos, A., Wolfert, J., Verwaart, T., Terol, C. M., Brewster, C., Robbemond, R., et al. (2013). The use of future internet technologies in agri. & food sectors: integrating the supply chain. Procedia Technology, 8, 51–60.

    Article  Google Scholar 

  • Leat, P., & Giha, C. R. (2008). Building collaborative agri-food supply chains. British Food Journal, 102(4), 311–395.

    Google Scholar 

  • Mishra, B. K., Bharadi, V. A., Nemade, B., Vhatkar, S., & Dias, J. (2016). Oral-care goods sales forecasting using artificial neural network model. Procedia Computer Science, 79, 238–243.

    Article  Google Scholar 

  • Mor, R. S., Bhardwaj, A., & Singh, S. (2018a). Benchmarking the interactions among barriers in dairy supply chain: An ISM approach. International Journal for Quality Research, 12(2), 385–404.

    Google Scholar 

  • Mor, R. S., Bhardwaj, A., & Singh, S. (2018b). A structured-literature-review of the supply chain practices in dairy industry. Journal of Operations and Supply Chain Management, 11(1), 14–25.

    Article  Google Scholar 

  • Mor, R. S., Bhardwaj, A., & Singh, S. (2018c). Benchmarking the interactions among performance indicators in dairy supply chain: An ISM approach. Benchmarking: An International Journal (in press).

    Google Scholar 

  • Mor, R. S., Bhardwaj, A., & Singh, S. (2018d). A structured literature review of the supply chain practices in food processing industry. In Proceedings of the 2018 International Conference on Industrial Engineering and Operations Management, Bandung, Indonesia, March 6–8, 2018 (pp. 588–599).

    Google Scholar 

  • Mor, R.S., Nagar, J., & Bhardwaj, A. (2018e). A comparative study of forecasting methods for sporadic demand in an auto service station. International Journal of Business Forecasting & Marketing Intelligence (in press).

    Google Scholar 

  • Mor, R. S., Singh, S., Bharadwaj, A., & Singh, L. P. (2015). Technological implications of supply chain practices in agri-food sector: A review. International Journal of Supply and Operations Management, 2(2), 720–747.

    Google Scholar 

  • Mor, R. S., Singh, S., Bhardwaj, A., & Bharti, S. (2017). Exploring the causes of low-productivity in dairy industry using AHP. Jurnal Teknik Industri, 19(2), 83–92.

    Article  Google Scholar 

  • Patushi, S., & Kume, V. (2014). The development of clusters as a way to increase competitiveness of Businesses (case of milk processing industry in Tirana). European Scientific Journal, 10(13), 98–116.

    Google Scholar 

  • Ping, L. (2016). Based on the regression analysis model throughput forecast of port group in the upper Yangtze River. School of Economics and Management. ISSN: 978-1-5090-1102-5/16.

    Google Scholar 

  • Sarno, R., & Herdiyanti, A. (2010). A service portfolio for an enterprise resource planning. International Journal of Computer Science and Network Security, 10(3), 144–156.

    Google Scholar 

  • Spicka, J. (2013). The competitive environment in the dairy industry and its impact on the food industry. Agris On-line Papers in Economics and Informatics, 5(2), 89–102.

    Google Scholar 

  • Sugiarto, V. C., Sarno, R., & Sunaryono, D. (2016). Sales forecasting using holt-winters in enterprise resource planning at sales and distribution module. In International Conference on Information, Communication Technology and System. IEEE (pp. 8–13).

    Google Scholar 

  • Taylor, J. W. (2011). Multi-item sales forecasting with total and split exponential smoothing. Journal of the Operational Research Society, 62, 555–563.

    Article  Google Scholar 

  • Tratar, L. F., & Strmčnik, E. (2016). The comparison of Holt-Winters method and multiple regression method: A case study. Energy, 109, 266–276.

    Article  Google Scholar 

  • Vaida P. (2008). Selection of market demand forecast methods: criteria and application. Engineering Economics, Economics of Engineering Decisions, 3(58).

    Google Scholar 

  • Veiga, C. P., Veiga, C. R., Catapan, A., Tortato, U., & Silva, W. V. (2014). Demand forecasting in food retail: A comparison between the Holt-Winters and ARIMA models. WSEAS Transactions on Business and Economics, 11, 608–614.

    Google Scholar 

  • Weber, S. A., Salamon, P., & Hansen, H. (2014). Policy impacts in the dairy supply chain: The case of German whole milk powder. In Proceedings in System dynamics and Innovation in Food networks (pp. 439–447).

    Google Scholar 

  • Yuan, X. M., & Cai, T. X. (2008). New forecasting algorithms for intermittence demands. SIMTech. Technical Reports, 9(4), 228–232.

    Google Scholar 

  • Zhou, Q., Han, R., & Li, T. (2015). A two-step dynamic inventory forecasting model for large manufacturing. In International Conference on Machine Learning and Applications (Vol. 2, No. 4, pp. 749–753).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the key resource persons from dairy industry. Further, the authors would like to express their sincere gratitude for the remarks and recommendations made by anonymous reviewers and editor which radically improved the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul S. Mor .

Editor information

Editors and Affiliations

6.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 852 kb)

Appendix

Appendix

  • Forecasting Models and the Calculations for MAD, MSE, MAPE, and RMSE

  1. 1.

    Moving Average (MA)

  1. A.

    MA5: Moving average of 5 months (MA5) has been considered here, as derived below:

The values in Table 6.11 have been calculated for ‘One period,’ and rest can be calculated by using formula for MAPE, MAD, MSE, and RMSE.

Table 6.11 MA5

(a) Forecast Demand, i.e., C11 = AVERAGE(B6:B10)

(b) Error = B11 − C11

(c) abs error = ABS(D11)

(d) Square Error = E11 * E11

(e) % Error = E11/B11 * 100

(f) MAPE = AVERAGE(G11:G53)

(g) MAD = AVERAGE(E11:E53)

(h) MSE = AVERAGE(F11:F53)

(i) RMSE = SQRT(J11)

  1. B.

    MA6: Here, the moving average of 6 months has been derived, as explained below:

The values in Table 6.12 have been calculated for ‘One period,’ and rest can be calculated by using formula for MAPE, MAD, MSE, and RMSE.

Table 6.12 MA6

(a) Forecast Demand, i.e., C66 = AVERAGE(B60:B65)

(b) Error = B66 − C66

(c) abs error = ABS(D66)

(d) Square Error = E66 * E66

(e) % Error = E66/B66 * 100

(f) MAPE = AVERAGE(G66:G107)

(g) MAD = AVERAGE(E66:E107)

(h) MSE = AVERAGE(F66:F107)

(i) RMSE = SQRT(J66)

  1. C.

    MA7: Here, the moving average of 7 months has been derived, as explained below:

The values in Table 6.13 have been calculated for ‘One period,’ and rest can be calculated by using formula for MAPE, MAD, MSE, and RMSE.

Table 6.13 MA7

(a) Forecast Demand, i.e., C121 = AVERAGE(B114:B120)

(b) Error = B121 − C121

(c) abs error = ABS(D121)

(d) Square Error = E121 * E121

(e) % Error = E121/B121 * 100

(f) MAPE = AVERAGE(G121:G161)

(g) MAD = AVERAGE(E121:E161)

(h) MSE = AVERAGE(F121:F161)

(i) RMSE = SQRT(J121)

  1. D.

    MA8: Here, the moving average of 8 months has been derived, as explained below:

The values in Table 6.14 have been calculated for ‘One period,’ and rest can be calculated by using formula for MAPE, MAD, MSE, and RMSE.

Table 6.14 MA8

(a) Forecast Demand, i.e., C176 = AVERAGE(B168:B175)

(b) Error = B176 − C176

(c) abs error = ABS(D176)

(d) Square Error = E176 * E176

(e) % Error = E176/B176 * 100

(f) MAPE = AVERAGE(G176:G215)

(g) MAD = AVERAGE(E176:E215)

(h) MSE = AVERAGE(F176:F215)

(i) RMSE = SQRT(J176)

  1. E.

    MA9: Here, the moving average of 9 months has been derived, as explained below:

The values in Table 6.15 have been calculated for one period, and rest can be calculated by using formula for MAPE, MAD, MSE, and RMSE.

Table 6.15 MA9

(a) Forecast Demand, i.e., C230 = AVERAGE(B221:B229)

(b) Error = B230 − C230

(c) abs error = ABS(D230)

(d) Square Error = E230 * E230

(e) % Error = E230/B230 * 100

(f) MAPE = AVERAGE(G230:G268)

(g) MAD = AVERAGE(E230:E268)

(h) MSE = AVERAGE(F230:F268)

(i) RMSE = SQRT(J230)

  1. 2.

    Holt and Winters

  1. A.

    Monthly Demand

The values in Table 6.16 have been calculated for ‘One period,’ and rest can be calculated by using formula for MAPE, MAD, MSE, and RMSE.

Table 6.16 Monthly demand

(a) Forecast Demand

  • For first period

Level Factor (u), D15 = C15/F15

Trend Factor (v), E15 = 0

Seasonal Factor (s), F4 = C4/AVERAGE(C$4:C$15)

  • For the other periods using the following formula

(u), D16 = M$14 * C16/F4 + (1 − M$14) * (D15 + E15)

(v), E16 = O$14 * (D16 − D15) + (1 − O$14) * E15

(s), F16 = Q$14*C16/D16 + (1 − Q$14) * F4

So, the Forecast, G16 = (D15 + E15) * F4

(b) Error = C16 − G16

(c) abs error = ABS(H16)

(d) Square Error = I16 * I16

(e) % Error = I16/C16 * 100

(f) MAPE = AVERAGE(K16:K51)

(g) MAD = AVERAGE(I16:I51)

(h) MSE = AVERAGE(J16:J51)

(i) RMSE = SQRT(M4)

  1. B.

    Daily Demand

The values in Table 6.17 have been calculated for ‘One period,’ and rest can be calculated by using formula for MAPE, MAD, MSE, and RMSE.

Table 6.17 Daily demand

(a) Forecast Demand

  • For first period

Level Factor (u), D9 = C9/F9

Trend Factor (v), E9 = 0

Seasonal Factor (s), F3 = C3/AVERAGE(C$3:C$9)

  • For the other periods using the following formula

(u), D10 = M$16 * C10/F3 + (1 − M$16) * (D9 + E9)

(v), E10 = O$16 * (D10 − D9) + (1 − O$16) * E9

(s), F10 = Q$16*C10/D10 + (1 − Q$16) * F3

So, the Forecast, G10 = (D9 + E9) * F3

(b) Error = C10 − G10

(c) abs error = ABS(H10)

(d) Square Error = I10 * I10

(e) % Error = I10/C10 * 100

(f) MAPE = AVERAGE(K10:K1463)

(g) MAD = AVERAGE(I10:I1463)

(h) MSE = AVERAGE(J10:J1463)

(i) RMSE = SQRT(M3)

  1. 3.

    Regression Analysis

The values in Table 6.18 have been calculated for ‘One period,’ and rest can be calculated by using formula for MAPE, MAD, MSE, and RMSE.

Table 6.18 Regression analysis

(a) Forecast Demand, F3 = M$20 + D3 * M$21

(b) Error = C3 − F3

(c) abs error = ABS(G3)

(d) Square Error = H3 * H3

(e) % Error = H3/C3 * 100

(f) MAPE = AVERAGE(J3:J50)

(g) MAD = AVERAGE(H3:H50)

(h) MSE = AVERAGE(I3:I50)

(i) RMSE = SQRT(S4)

  1. 4.

    Multiple Regression

  1. A.

    Monthly Demand

The values in Tables 6.19 and 6.20 have been calculated for ‘One period,’ and rest can be calculated by using formula for MAPE, MAD, MSE, and RMSE.

Table 6.19 Monthly demand
Table 6.20 ANOVA

(a) Forecast Demand, P57

P57 = C$126 + C$127 * D57 + C$128 * E57 + C$129*F57 + C$130 * G57 + C$131 * H57 + C$132 * I57 + C$133 * J57 + C$134 * K57 + C$135 * L57 + C$136 * M57 + C$137 * N57 + C$138 * O57

(b) Error = C57 − P57

(c) abs error = ABS(Q57)

(d) Square Error = R57 * R57

(e) % Error = R57/C57 * 100

(f) MAPE = AVERAGE(S57:S104)

(g) MAD = AVERAGE(R57:R104)

(h) MSE = AVERAGE(T57:T104)

(i) RMSE = SQRT(W57)

  1. B.

    Daily Demand

The values in Tables 6.21 and 6.22 have been calculated for ‘One period,’ and rest can be calculated by using formula for MAPE, MAD, MSE, and RMSE.

Table 6.21 Daily demand
Table 6.22 ANOVA

(a) Forecast Demand, J4

J4 = Q$22 + C4 * Q$23 + D4 * Q$24 + E4 * Q$25 + F4 * Q$26 + G4 * Q$27 + H4 * Q$28 + I4 * Q$29

(b) Error = B4 − J4

(c) abs error = ABS(K4)

(d) Square Error = L4 * L4

(e) % Error = L4/B4 * 100

(f) MAPE = AVERAGE(N4:N1464)

(g) MAD = AVERAGE(L4:L1464)

(h) MSE = AVERAGE(M4:M1464)

(i) RMSE = SQRT(R4)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mor, R.S., Jaiswal, S.K., Singh, S., Bhardwaj, A. (2019). Demand Forecasting of the Short-Lifecycle Dairy Products. In: Chahal, H., Jyoti, J., Wirtz, J. (eds) Understanding the Role of Business Analytics. Springer, Singapore. https://doi.org/10.1007/978-981-13-1334-9_6

Download citation

Publish with us

Policies and ethics