Skip to main content

A New Design for Secondary Electron Measurement and Application

  • Conference paper
  • First Online:
  • 992 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 213))

Abstract

The secondary electron is researched in many fields. In order to measure the secondary electron angular distribution of all the solid angle, the X axis support and Y axis support are proposed. The energy distribution of the secondary electron also can be measured. The accumulated charge on the insulated material surface during the secondary electron measurement has very bad effects. Although many methods have been used for the charge neutralization, many defects are still not resolved. So the plasma neutralization is proposed. The plasma neutralization can also be used in the electron microscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wiza, J.L.: Microchannel plate detectors. Nucl. Instrum. Methods A 162, 587–601 (1979)

    Article  Google Scholar 

  2. Giudicotti, L.: Time dependent model of gain saturation in microchannel plates and channel electron multipliers. Nucl. Instrum. Methods A 659, 336–347 (2001)

    Article  ADS  Google Scholar 

  3. Wang, Y.F., Qiang, S., Zhao, T.C., et al.: A new design of large area MCP-PMT for the next generation neutrino experiment. Nucl. Instrum. Methods A 695, 113–117 (2012)

    Article  ADS  Google Scholar 

  4. Ahn, S., Lee, S.E., Ryu, S.H., et al.: A study on the secondary electron emission from Na-ion-doped MgO films in relation to the discharge characteristics of plasma display panels. Thin Solid Films 517, 1706–1709 (2009)

    Article  ADS  Google Scholar 

  5. Altieri, S., Finazzi, M., Hsieh, H.H., et al.: Secondary electron yield enhancement by MgO capping layers. Surf. Sci. 604, 181–185 (2010)

    Article  ADS  Google Scholar 

  6. Auday, G., Guill, Ph., Galy, J.: Secondary emission of dielectrics used in plasma display panels. J. Appl. Phys. 88, 4871 (2000)

    Article  ADS  Google Scholar 

  7. Vaughan, J.R.M.: Observations of multipactor in magnetrons. IEEE Trans. Electron Dev. 15(11), 883–889 (1968)

    Article  ADS  Google Scholar 

  8. Benford, J., Benford, G.: Pulse shortening in high power microwave sources. In: IEEE Conference Record - Abstracts. 1996 IEEE International Conference on Plasma Science, Boston, MA, USA (1996)

    Google Scholar 

  9. Michizono, S., Saito, Y., Yamaguchi, S., Anami, S.: Dielectric materials for use as output window in high-power klystrons. IEEE Trans. Electr. Insul. 28(4), 692–699 (1993)

    Article  Google Scholar 

  10. Kim, H.C., Verboncoeu, J.P.: Transition of window breakdown from vacuum multipactor discharge to RF plasma. Phys. Plasma 13(5), 123–131 (2006)

    Article  Google Scholar 

  11. Rimmer, R.A.: High power microwave window failures. IEEE Trans. Plasma Sci. 5(12), 121–130 (1998)

    Google Scholar 

  12. Hatch, A.J., Williams, H.B.: Multipacting modes of high-frequency gaseous breakdown. Phys. Rev. 112, 681 (1958)

    Article  ADS  Google Scholar 

  13. Vaughan, J.R.M.: Multipactor. IEEE Trans. Electron. Dev. 35, 1172 (1988)

    Article  ADS  Google Scholar 

  14. Gonin, I., Khabibouline, T., Langranco, G., et al.: High gradient tests of the HINS SSRa1 single spoke resonator. In: HB 2008 (2008)

    Google Scholar 

  15. Anderson, B.: Mechanism of pulsed surface flashover involving electron-stimulated desorption. J. Appl. Phys. 51(3), 1414–1421 (1980)

    Article  ADS  Google Scholar 

  16. Boersch, H., Hamisch, H., Ehrlich, W.: Surface discharges across insulators in vacuum. Z. Angew. Phys. 15(6), 518–525 (1963)

    Google Scholar 

  17. Saito, Y., Michizuno, N., Anami, S., et al.: Surface flashover on alumina RF windows for high-power use. IEEE Trans. Electr. Insul. 28(4), 566–573 (1993)

    Article  Google Scholar 

  18. Guo, Z.Y., Liu, Y.D., Qin, Q., et al.: The studies of electron cloud instability. In: Proceedings of APAC 2004, Gyeongju, Korea, pp. 44–48 (2004)

    Google Scholar 

  19. Yamamoto, K., Shibata, T., Ogivara, N., et al.: Secondary electron emission yields from the J-PARC RCS vacuum components. Vacuum 81, 788–792 (2007)

    Article  ADS  Google Scholar 

  20. Zimmermann, F.: The electron cloud instability: summary of measurements and understanding. In: Proceedings of the 2001 Particle Accelerator Conference, Chicago, pp. 666–670 (2001)

    Google Scholar 

  21. Harkay, K., Rosenberg, R., Guo, Z.Y., et al.: Survey of recent results on electron cloud effects in photon machines. In: Proceedings of the 2001 Particle Accelerator Conference, Chicago, pp. 671–675 (2001)

    Google Scholar 

  22. HarKay, K.: Electron cloud observations: a retrospective. In: Proceedings of the 31st ICFA Advanced Beam Dynamics Workshop on Electron-Cloud Effects, ECLOUD 2004, California (2004)

    Google Scholar 

  23. Jbara, O., Fakhfakh, S., Belhaj, M., Rondot, S., Hadjadj, A., Patat, J.M.: Charging effects of PET under electron beam irradiation in a SEM. J. Phys. D Appl. Phys. 41, 245504 (2008)

    Article  ADS  Google Scholar 

  24. Boughariou, A., Hachicha, O., Kallel, A., Blaise, G.: Effect of current density on electron beam induced charging in MgO. Nuclear Instrum. Methods Phys. Res. B 240, 697–703 (2005)

    Article  ADS  Google Scholar 

  25. Cazaux, J.: Mechanisms of charging in electron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 105, 155–185 (1999)

    Article  Google Scholar 

  26. Willis, R.F.: Secondary-electron-emission spectroscopy of tungsten angular dependence and phenomenology. Phys. Rev. B 18(10), 5140–5161 (1978)

    Article  ADS  Google Scholar 

  27. Hopman, H.J., Alberda, H., Attema, I., Zeijlemaker, H., Verhoeven, J.: Measuring the secondary electron emission characteristic of insulators. J. Electron Spectrosc. Relat. Phenom. 131–132, 51–60 (2003)

    Article  Google Scholar 

  28. Kawai, J.: Total reflection X-ray photoelectron spectroscopy: a review. J. Electron Spectrosc. Relat. Phenom. 178–179, 268–272 (2010)

    Article  Google Scholar 

  29. Chen, L., Tian, J., Liu, C., Wang, Y., Zhao, T., Liu, H., Wei, Y., Sai, X., Chen, P., Wang, X., Lu, Y., Hui, D., Guo, L., Liu, S., Qian, S., Xia, J., Yan, B., Zhu, N., Sun, J., Si, S., Li, D., Wang, X., Huang, G., Qi, M.: Optimization of the electron collection efficiency of a large area MCP-PMT for the JUNO experiment. Nucl. Instrum. Methods Phys. Res. Sect. A 827, 124–130 (2016)

    Article  ADS  Google Scholar 

  30. Jinhai, L.: Patent: one type of device for second electron measurement, 201610988714.7

    Google Scholar 

  31. Bohm, C., Perrin, J.: Retarding-field analyzer for measurements of ion energy distributions and secondary electron emission coefficients in low-pressure radio frequency discharge. Rev. Sci. Instrum. 64(1), 31–44 (1993)

    Article  ADS  Google Scholar 

  32. Palmberg, P.W., Rhodin, T.N.: Auger electron spectroscopy of FCC metal surface. J. Appl. Phys. 39(5), 2425–2432 (1968)

    Article  ADS  Google Scholar 

  33. Patino, M.I., Raitses, Y., Koel, B.E., Wirz, R.E.: Analysis of secondary electron emission for conducting materials using 4-grid LEED/AES optics. J. Phys. D Appl. Phys. 48, 195204 (2015)

    Article  ADS  Google Scholar 

  34. Sickafus, E.N.: A secondary emission analog for improved auger spectroscopy with retarding potential analyzers. Rev. Sci. Instrum. 42(7), 933–941 (1971)

    Article  ADS  Google Scholar 

  35. Wei, P.S.P., Cho, A.Y., Caldwell, C.W.: Instrumental effects of the retarding grids in a LEED apparatus. Rev. Sci. Instrum. 40(8), 1075–1079 (1969)

    Article  ADS  Google Scholar 

  36. Cazaux, J.: Work function effects on the positive charging of supported insulating samples exposed to X-rays (as in XPS) and other irradiations. J. Electron Spectrosc. Relat. Phenom. 192, 40–51 (2014)

    Article  Google Scholar 

  37. Scholtz, J.J., Schmitz, R.W.A., Hendriks, B.H.W., de Zwart, S.T.: Description of the influence of charging on the measurement of the secondary electron yield of MgO. Appl. Surf. Sci. 111, 259–264 (1997)

    Article  ADS  Google Scholar 

  38. Fakhfakh, S., Jbara, O., Rondot, S., Hadjadj, A., Patat, J.M., Fakhfakh, Z.: Analysis of electrical charging and discharging kinetics of different glasses under electron irradiation in a scanning electron microscope. J. Appl. Phys. 108, 093705 (2010)

    Article  ADS  Google Scholar 

  39. Johnson, J.B., McKay, K.G.: Phys. Rev. 91(3), 582 (1953)

    Google Scholar 

  40. Cazaux, J.: About the charge compensation of insulating samples in XPS. J. Electron Spectrosc. Relat. Phenom. 113, 15–33 (2000)

    Article  Google Scholar 

  41. Cazaux, J., Lehuede, P.: Some physical descriptions of charging effects of insulators under incident particle bombardment. J. Electron Spectrosc. Relat. Phenom. 59, 49–71 (1992)

    Article  Google Scholar 

  42. Weng, M., Cao, M., Zhao, H.-J., Zhang, H.-B.: A simple charge neutralization method for measuring the secondary electron. Rev. Sci. Instrum. 85, 036108 (2014)

    Article  ADS  Google Scholar 

  43. Gonski, H., Freund, H.J., Hohlneicher, G.: On the importance of photoconduction in ESCA experiments. J. Electron Spectrosc. Rel. Phenom. 12, 435 (1977)

    Article  Google Scholar 

  44. Handel, K.J.: A two electron gun technique for the measurement of secondary emission characteristics of a variety of materials. IEEE Trans. Electron Dev. 13(6), 525 (1966)

    Article  ADS  Google Scholar 

  45. Vallayer, B., Saito, Y., Treheux, D.: Proceedings 2nd International Conference on Solid Dielectrics CSC2, Antibes France April 1995, Société Française du Vide, Paris, p. 589 (1995)

    Google Scholar 

  46. Cazaux, J.: Some considerations on the electric field induced in insulators by electron bombardment. J. Appl. Phys. 59, 1418–1430 (1986)

    Article  ADS  Google Scholar 

  47. Qunn, X., Ji, Y., Zhang, H., Zhang, Y., Xuedong, X., Zhong, T.: Charging compensation of alumina samples by using all oxygen micro-injector in environmental scanning. Electron Microsc. Scan. 28(5), 289–293 (2006)

    Google Scholar 

  48. Ji, Y., Guo, H.S., Zhong, T.X., Zhang, H., Quan, X.L., Zhang, Y.Q., Xu, X.D.: Charge and charging compensation on oxides and hydroxides in oxygen environmental SEM. Ultramicroscopy 103, 191–198 (2005)

    Article  Google Scholar 

  49. Totll, M., Thiel, B.L., Donald, A.M.: Interpretation of secondary electron images obtained using a low vacuum SEM. Ultramicroscopy 94, 71–87 (2003)

    Article  Google Scholar 

  50. Cazaux, J., Gressus, C.L.: Phenomena relating to charging in insulators: microscopic effects and microscopy cause. Scan. Microsc. 5(1), 17–27 (1991)

    Google Scholar 

  51. Ichmura, S., Bauer, H.E., Seiler, H., Hofmann, S.: Reduction of charging in surface analysis of insulating materials by AES. Surf. Interface Anal. 14, 250 (1989)

    Article  Google Scholar 

  52. Bass, A.D., Cloutier, P., Sanche, L.: J. Appl. Phys. 84, 2740 (1998)

    Google Scholar 

  53. Huchital, D.A., Mc Kean, R.T.: Appl. Phys. Lett. 20, 158 (1972)

    Google Scholar 

  54. Liehr, M., Thiry, P.A., Pireaux, J.J., Caudano, R.: Phys. Rev. B 33, 5682 (1986)

    Google Scholar 

  55. Geller, J.D.: Proceedings of 2nd International Conference on Solid Dielectrics CSC2 Antibes, France 1995, Ibid. Le Vide Sup 275, p. 644 (1995)

    Google Scholar 

  56. Wachtendorf, C., Herweg, C., Daeuber, M., Benedikt, J., von Keudell, A.: Thin film growth from a low pressure plasma excited in a supersonic expanding gas jet. J. Phys. D Appl. Phys. 42, 095205 (2009)

    Article  ADS  Google Scholar 

  57. Qing, Z., Otorbaev, D.K., Brussaard, G.J.H., van de Sanden, M.C.M., Schram, D.C.: Diagnostics of the magnetized low-pressure hydrogen plasma jet molecular regime. J. Appl. Phys. 80(3), 1312–1324 (1996)

    Article  ADS  Google Scholar 

  58. Šícha, M., Hubicka, Z., Soukup, L., Jastrabík, L., Cada, M., Špatenka, P.: Low-pressure RF multi-plasma-jet system for deposition of alloy and composite thin films. Surf. Coat. Technol. 148, 199–205 (2001)

    Article  Google Scholar 

  59. Caldirola, S., Barni, R., Roman, H.E., Riccardi, C.: Mass spectrometry measurements of a low pressure expanding plasma jet. J. Vac. Sci. Technol. A 33, 061306 (2015). https://doi.org/10.1116/1.4931612

    Article  Google Scholar 

  60. Itou, Y., Hirai, E., Shimakawa, T.: Estimation of minimum power consumption and pumps cost for the differential pumping system. Appl. Surf. Sci. 169–170, 792–798 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Liu, S., Yan, B. (2018). A New Design for Secondary Electron Measurement and Application. In: Liu, ZA. (eds) Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017. TIPP 2017. Springer Proceedings in Physics, vol 213. Springer, Singapore. https://doi.org/10.1007/978-981-13-1316-5_42

Download citation

Publish with us

Policies and ethics