Skip to main content

Current Advancements, Prospects and Challenges in Biomethanation

  • Chapter
  • First Online:
Recent Advancements in Biofuels and Bioenergy Utilization

Abstract

The underdeveloped state of waste management in developing country like India is a motivation for the study of eco-friendly processes like biomethanation and bioremediation. The current article focuses on bioremediation via methanotrophy by using methanotrophs. The biomethanation process is a multistep process leading to the production of biogas. Anaerobic digestion is a traditional practice used in urban parts of India. Improper management of waste leads to propagation of innumerable ailments. The current status of waste management in India has improved at a much higher rate. The installation of biogas plants across various research institutes in India, like Sardar Patel Renewable Energy Research Institute (SPRERI) in Gujrat, Biogas Plant at Trombay, Appropriate Rural Technology Institute (ARTI) in Pune and Bhabha Atomic Research Centre (BARC) in Mumbai, practice biomethanation in a full-fledged process and yield high rate of biogas fuel from waste materials. The biogas produced is clean, economical and used for commercial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agyeman FO, Tao W (2014) Anaerobic co-digestion of food waste and dairy manure: effects of food waste particle size and organic loading rate. J Environ Manag 133:268–274

    Article  CAS  Google Scholar 

  • Arsova L (2010) Anaerobic digestion of food waste: current status, problems and an alternative product. M.S. thesis, Columbia University, Berlin, Germany

    Google Scholar 

  • Barcena TG, Yde JC, Finster KW (2010) Methane flux and high affinity methanotrophic diversity along the chronosequence of a receding glacier in Greenland. Ann Glaciol 51:23–31

    Article  CAS  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert C, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:6236–6626

    Article  Google Scholar 

  • Bouallagui H, Haouari O, Touhami Y, Ben Cheikh R, Marouani L, Hamdi M (2004) Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Process Biochem 39:2143–2148

    Article  CAS  Google Scholar 

  • Bougrier C, Albasi C, Delgenes JP, Carrere H (2006) Effect of ultrasonic, thermal and ozone pretreatments on waste activated sludge solubilization and anaerobic biodegradability. Chem Eng Process 45:711–718

    Article  CAS  Google Scholar 

  • Buhr HO, Andrews JF (1977) The thermophilic anaerobic digestion process. Water Res 11:129–143

    Article  CAS  Google Scholar 

  • Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pre-treatment on anaerobic digestion: a review. Waste Manag 32:1634–1650

    Article  CAS  Google Scholar 

  • Carrere H, Dumas C, Battimelli A, Batsone DJ, Delgenes JP, Steyer JP et al (2010) Pre-treatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15

    Article  CAS  Google Scholar 

  • Census (2011) Provisional population totals, India. Retrieved from http://censusindia.gov.in/2011provresults/datafiles/india/povpoputotalpresentation2011.pdf

  • Cervantes C, Campos-Garcıa J, Devars S, Gutierrez-Corona F, LozaTavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Lett 25:335–347

    Article  CAS  Google Scholar 

  • Cesaro A, Belgiorno V (2014) Pre-treatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem Eng J 240:24–37

    Article  CAS  Google Scholar 

  • Chen L, Dixon K (1998) Analysis of repair and mutagenesis of chromium induced DNA damage in yeast mammalian cells and transgenic mice. Environ Health Perspect 106:1027–1032

    Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  • Cheng YS, Halsey JL, Anderson PD, Remsen CC, Collins MLP (1998) Use of PCR to detect particulate methane monooxygenase in groundwater. In: Abstracts of the 98th general meeting of the American Society for Microbiology. American Society for Microbiology, Washington, DC, p 377

    Google Scholar 

  • Choi DW, Do YS, Zea CJ, McEllistrem MT, Lee SW, Semrau JD, Pohl NL, Kisting CJ, Scardino LL, Hartsel SC, Boyd ES, Geesey GG, Riedel TP, Shafe PH, Kranski KA, Tritsch JR, Antholine WE, DiSpirito AA (2006) Spectral and thermodynamic properties of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II) binding by methanobactin from Methylosinus trichosporium OB3b. J Inorg Biochem 100:2150–2161

    Article  CAS  Google Scholar 

  • Chowdhury TR, Dick RP (2013) Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl Soil Ecol 65:8–22

    Article  Google Scholar 

  • Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG (1979) Anaerobic digestion of glucose with separated acid production and methane formation. Water Res 13:571–580

    Article  CAS  Google Scholar 

  • Dalton H (2005) The Leeuwenhoek lecture 2000. The natural and unnatural history of methane-oxidizing bacteria. Philos Trans R Soc Lond Ser B Biol Sci 360:1207–1222

    Article  CAS  Google Scholar 

  • De Marco P, Pacheco CC, Figueiredo AR, Moradas-Ferreira P (2004) Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiol Lett 234:75–80

    Article  Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969

    Article  CAS  Google Scholar 

  • Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261

    Article  CAS  Google Scholar 

  • Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156

    Article  CAS  Google Scholar 

  • Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692

    Article  Google Scholar 

  • Dubey SK (2005) Microbial ecology of methane emission in rice agroecosystem: a review. Appl Ecol Environ Res 2:1–27

    Article  Google Scholar 

  • Dumont MG, Murrell JC (2005) Community-level analysis: key genes of aerobic methane oxidation. In: Leadbetter J (ed) Methods in enzymology. SPI, St Louis, pp 413–427

    Google Scholar 

  • Durisch-Kaiser E, Klauser L, Wehrli B, Schubert C (2005) Evidence of intense archaeal and bacterial methanotrophic activity in the Black Sea water column. Appl Environ Microbiol 71:8099–8106

    Article  CAS  Google Scholar 

  • Elliott A, Mahmood T (2007) Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Water Res 41:4273–4286

    Article  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  Google Scholar 

  • Facchin V, Cavinato C, Fatone F, Pavan P, Cecchi F, Bolzonella D (2013) Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin. Biochem Eng J 70:71–77

    Article  CAS  Google Scholar 

  • Ferrer I, Ponsa S, Vasquez F, Font X (2008) Increasing biogas production by thermal sludge pretreatment prior to thermophilic anaerobic digestion. Biochem Eng J 42:186–192

    Article  CAS  Google Scholar 

  • Geetha GS, Jagadeesh KS, Reddy TKR (1990) Nickel as an accelerator of biogas production in water hyacinth (Eichornia crassipes solms.). Biomass 21:157–161

    Article  Google Scholar 

  • Gou C, Yang Z, Huang J, Wang H, Xu H, Wang LB (2014) Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere 105:146–151

    Article  CAS  Google Scholar 

  • Hagen LH, Vivekanand V, Linjordet R, Pope PB, Eijsink VGH, Horn SJ (2014) Microbial community structure and dynamics during co-digestion of whey permeate and cow manure in continuous stirred tank reactor systems. Bioresour Technol 171:350–359

    Article  CAS  Google Scholar 

  • Hajarnis SR, Ranade DR (1994) Inhibition of methanogens by n- and iso-volatile fatty acids. World J Microbiol Biotechnol 10:350–351

    Article  CAS  Google Scholar 

  • Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:18.11–18.19

    Article  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass: a review. Bioresour Technol 100:10–18

    Article  CAS  Google Scholar 

  • Jain SK, Gujral GS, Jha NK, Vasudevan P (1992) Production of biogas from Azolla pinnata R Br and Lemma minor L.: effects of heavy metal contamination. Bioresour Technol 41:273–277

    Article  CAS  Google Scholar 

  • Jarvis A, Nordberg A, Jarlsvik T, Mathisen B, Svensson BH (1997) Improvement of a grass-clover silage-fed biogas process by the addition of cobalt. Biomass Bioenergy 12:453–460

    Article  CAS  Google Scholar 

  • Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing X-H (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49:277–288

    Article  CAS  Google Scholar 

  • Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PMA (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–1615

    Article  CAS  Google Scholar 

  • Kim JK, Oh BR, Chun YN, Kim SW (2006) Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J Biosci Bioeng 102:328–332

    Article  CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  Google Scholar 

  • Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479

    Article  CAS  Google Scholar 

  • Lee DH, Behera SK, Kim JW, Park HS (2009) Methane production potential of leachate generated from Korean food waste recycling facilities: a lab-scale study. Waste Manag 29:876–882

    Article  CAS  Google Scholar 

  • Lieberman RL, Rosenzweig AC (2005) Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182

    Article  CAS  Google Scholar 

  • Lindner AS, Pacheco A, Aldrich HC, Staniec AC, Uz I, Hodson DJ (2007) Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer. Int J Syst Evol Microbiol 57:1891–1900

    Article  CAS  Google Scholar 

  • Liu X, Wang W, Gao X, Zhou Y, Shen R (2012) Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manag 32:249–255

    Article  Google Scholar 

  • Lontoh S, Zahn JA, DiSpirito AA, Semrau JD (2000) Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase. FEMS Microbiol Lett 186:109–113

    Article  CAS  Google Scholar 

  • Ma J, Duong TH, Smits M, Vestraete W, Carballa M (2011) Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour Technol 102:592–599

    Article  CAS  Google Scholar 

  • Mata-Alvarez J (2005) Biomethanation of the organic fraction of municipal solid wastes. IWA Publishing, London

    Google Scholar 

  • Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid waste. An overview of research achievements and perspectives. Bioresour Technol 74:3–16

    Article  CAS  Google Scholar 

  • McDonald IR, Bodrossy L, Chen Y, Murrell JC (2007) Molecular techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315

    Article  Google Scholar 

  • Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M et al (2002) Microbial reefs in the black sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  CAS  Google Scholar 

  • Modenbach AA, Nokes SE (2012) The use of high-solids loading in biomass pretreatment – a review. Biotechnol Bioeng 109:1430–1442

    Article  CAS  Google Scholar 

  • Nagao N, Tajima N, Kawai M, Niwa C, Kurosawa N, Matsuyama T, Yusoff FM, Toda T (2012) Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour Technol 118:210–218

    Article  CAS  Google Scholar 

  • Neyens E, Baeyens J (2003) A review of thermal sludge pre-treatment processes to improve dewaterability. Hazard Mater 98:51–67

    Article  CAS  Google Scholar 

  • Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 5:293–306

    Article  Google Scholar 

  • Overland M, Tauson AH, Shearer K, Skrede A (2010) Evaluation of methane-utilizing bacteria products as feed ingredients for monogastric animals. Arch Anim Nutr 64:171–189

    Article  Google Scholar 

  • Park S, Li Y (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol 111:42–48

    Article  CAS  Google Scholar 

  • Preeti, Seenayya G (1994) Improvement of methanogenesis from cow dung and poultry litter waste digesters by addition of iron. World J Microbiol Biotechnol 10:211–214

    Article  Google Scholar 

  • Protot A, Julien L, Christophe D, Partick L (2011) Sludge disintegration during heat treatment at low temperature: a better understanding of involved mechanisms with a multi-parametric approach. Biochem Eng J 54:178–184

    Article  Google Scholar 

  • Rafique R, Poulse TG, Nizami A-S, Asam ZZ, Murphy JD, Kiely G (2010) Effect of thermal, chemical and thermo-chemical pretreatments to enhance methane production. Energy 35:4556–4561

    Article  CAS  Google Scholar 

  • Ramasamy K (1998) In: Gupta CL (ed) Renewable energy – basics and technology. Auroville Foundation and Solar Agni International, Pondicherry, pp 239–271

    Google Scholar 

  • Raposo F, Fernandez-Cegr V, de la Rubia MA et al (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86:1088–1098

    Article  CAS  Google Scholar 

  • Seenayya G, Rao CV, Shivaraj D, Preeti Rao S, Venkatswamy M (1992) Biogas production technology: an Indian perspective. Final report submitted to Department of Non-Conventional Energy Sources, Government of India, New Delhi, p 85

    Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    Article  CAS  Google Scholar 

  • Shukla AK, Vishwakarma P, Upadhyay SN, Tripathi AK, Prasana HC, Dubey SK (2009) Biodegradation of trichloroethylene (TCE) by methanotrophic community. Bioresour Technol 100:2469–2474

    Article  CAS  Google Scholar 

  • Shumilla AJ, Broderick JR, Wang Y, Barchowsky A (1999) Chromium Cr(VI) inhibits the transcriptional activity of nuclear factor – B by decreasing the interaction of p65 with c AMP – responsive element – binding protein. J Biol Chem 274:36207–36212

    Article  CAS  Google Scholar 

  • Taiganides EP (1980) Biomass-energy recovery from animal waste part I. World Anim Rev 35:2–12

    CAS  Google Scholar 

  • Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Hasin AAL, Gurman SJ, Murphy LM, Perry A, Simth TJ, Gardiner PHE (2010) Remediation of chromium (VI) by a methane-oxidizing bacterium. Environ Sci Technol 44:400–405

    Article  Google Scholar 

  • Toreci I, Kennedy KJ, Droste RL (2009) Evaluation of continuous mesophilic anaerobic sludge digestion after high temperature microwave pretreatment. Water Res 43:1273–1284

    Article  CAS  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131

    Article  CAS  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229

    Article  CAS  Google Scholar 

  • Tsubota J, Eshinimaev BT, Khmelenina VN, Yuri A, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55:1877–1884

    Article  CAS  Google Scholar 

  • Van Haandel AC, Lettinga G (1994) Anaerobic sewage treatment—a practical guide for regions with a hot climate. Wiley, New York

    Google Scholar 

  • Wang L, Mattsson M, Rundstedt J, Karlsson N (2011) Different pretreatments to enhance biogas production. Master of Science thesis, Halmstad University

    Google Scholar 

  • Weemaes M, Grootaerd H, Simens F, Verstaete W (2000) Anaerobic digestion of ozonized biosolids. Water Res 34:2330–2336

    Article  CAS  Google Scholar 

  • Wu W (2007) Anaerobic co-digestion of biomass for methane production: recent research achievements. Iowa State University. Retrieved 20 April 2011 from: home.eng.iastate.edu/~tge/ce421-521/wei.pdf

  • Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98:130–134

    Article  CAS  Google Scholar 

  • Yu HQ, Tay JH, Fang HHP (2001) The roles of calcium in sludge granulation during UASB reactor start-up. Water Res 35:1052–1060

    Article  CAS  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  • Zayed G, Winter J (2000) Inhibition of methane production from whey by heavy metals—protective effect of sulphide. Appl Microbiol Biotechnol 53:726–731

    Article  CAS  Google Scholar 

  • Zeshan O, Karthikeyan P, Visvanathan C (2012) Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester. Bioresour Technol 113:294–302

    Article  CAS  Google Scholar 

  • Zhong W, Chi L, Luo Y, Zhang Z, Wu WM (2013) Enhanced methane production from Taihu Lake blue algae by anaerobic co-digestion with corn straw in continuous feed digesters. Bioresour Technol 134:264–270

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanthi Abraham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nair, S., Suresh, A., Abraham, J. (2018). Current Advancements, Prospects and Challenges in Biomethanation. In: Sarangi, P., Nanda, S., Mohanty, P. (eds) Recent Advancements in Biofuels and Bioenergy Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-13-1307-3_6

Download citation

Publish with us

Policies and ethics