Skip to main content

An Overview on the Application of Ligninolytic Microorganisms and Enzymes for Pretreatment of Lignocellulosic Biomass

  • Chapter
  • First Online:
Book cover Recent Advancements in Biofuels and Bioenergy Utilization

Abstract

Generation of biofuels from lignocellulosic biomass has received much interest in recent times to achieve an alternative energy source over conventional fossil fuels. Pretreatment is a vital step in the bioconversion of lignocellulosic biomass into biofuels, which is required to break down the lignocellulosic network of biomass. It is necessarily applied prior to the production of bioalcohols (bioethanol and biobutanol), biohydrogen, and biogas through fermentation. Delignification is the main objective of pretreatment that releases polysaccharides from the lignocellulosic matrix and increases enzymatic digestibility of cellulose. Although pretreatment can be done by using different physical, chemical, physicochemical, and biological methods, the latter is considered more promising as it is less expensive and eco-friendly, generates low or no inhibitors, and consumes relatively lower energy (steam and electricity). Many naturally occurring ligninolytic microorganisms and enzymes are used for delignification of biomass biologically. The aim of this chapter is to present an overview of different ligninolytic microorganisms (fungi and bacteria) and their enzymes for biological pretreatment of lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hamid AM, Solbiati JO, Cann I (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82:1–28

    Article  CAS  Google Scholar 

  • Achinas S, Euverink GJW (2016) Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol 23:44–53

    Article  CAS  Google Scholar 

  • Ambye-Jensen M, Johansen KS, Didion T, Kádár Z, Schmidt JE, Meyer AS (2013) Ensiling as biological pretreatment of grass (Festulolium hykor): the effect of composition, dry matter, and inocula on cellulose convertibility. Biomass Bioenergy 58:303–312

    Article  CAS  Google Scholar 

  • Amirta R, Tanabe T, Watanabe T, Honda Y, Kuwahara M, Watanabe T (2006) Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subvermispora. J Biotechnol 123:71–77

    Article  CAS  Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783

    Article  CAS  Google Scholar 

  • Bell PJ, Attfield PV (2009) Breakthrough in yeast for making bio-ethanol from lignocellulosics. Microbiogen Pty Ltd, Macquarie University Campus, Sydney https://dokumen.tips/documents/breakthrough-in-yeasts-for-making-bioethanol-from-lignocellulosies.html

    Google Scholar 

  • Binod P, Janu K, Sindhu R, Pandey A (2011) Hydrolysis of lignocellulosic biomass for bioethanol production. In: Biofuels: alternative feedstocks and conversion processes, pp. 229–250

    Chapter  Google Scholar 

  • van Bloois E, Pazmiño DET, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430

    Article  Google Scholar 

  • Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7

    Article  CAS  Google Scholar 

  • Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 17:326–342

    Article  CAS  Google Scholar 

  • Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, Bai F-W, Chang J-S (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10

    Article  CAS  Google Scholar 

  • Claassen P, Van Lier J, Contreras AL, Van Niel E, Sijtsma L, Stams A, De Vries S, Weusthuis R (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    Article  CAS  Google Scholar 

  • Crawford DL, Crawford RL (1980) Microbial degradation of lignin. Enzym Microb Technol 2:11–22

    Article  CAS  Google Scholar 

  • Cullen D (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53:273–289

    Article  CAS  Google Scholar 

  • Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustainability 9:1163

    Article  Google Scholar 

  • Dewar W, McDonald P, Whittenbury R (1963) The hydrolysis of grass hemicelluloses during ensilage. J Sci Food Agric 14:411–417

    Article  CAS  Google Scholar 

  • Gervais P, Molin P (2003) The role of water in solid-state fermentation. Biochem Eng J 13:85–101

    Article  CAS  Google Scholar 

  • Gianfreda L, Xu F, Bollag J-M (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–26

    Article  CAS  Google Scholar 

  • Gírio F, Fonseca C, Carvalheiro F, Duarte L, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  Google Scholar 

  • de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

    Article  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M-F, Lidén G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  Google Scholar 

  • Kalyani D, Lee K-M, Kim T-S, Li J, Dhiman SS, Kang YC, Lee J-K (2013) Microbial consortia for saccharification of woody biomass and ethanol fermentation. Fuel 107:815–822

    Article  CAS  Google Scholar 

  • Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass. Appl Biochem Biotechnol 105:27–41

    Article  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liers C, Arnstadt T, Ullrich R, Hofrichter M (2010) Patterns of lignin degradation and oxidative enzyme secretion by different wood-and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78:91–102

    Article  Google Scholar 

  • Lu Y, Cheng Y-F, He X-P, Guo X-N, Zhang B-R (2012) Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors. J Ind Microbiol Biotechnol 39:73–80

    Article  CAS  Google Scholar 

  • Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Sci 13:2388–2397

    Article  CAS  Google Scholar 

  • Mackuľak T, Prousek J, Švorc Ľ, Drtil M (2012) Increase of biogas production from pretreated hay and leaves using wood-rotting fungi. Chem Pap 66:649–653

    Google Scholar 

  • Mai C, Kües U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63:477–494

    Article  CAS  Google Scholar 

  • Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, Gerlt JA (2014) Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53:4047–4058

    Article  CAS  Google Scholar 

  • Martín-Sampedro R, Fillat Ú, Ibarra D, Eugenio ME (2015) Use of new endophytic fungi as pretreatment to enhance enzymatic saccharification of Eucalyptus globulus. Bioresour Technol 196:383–390

    Article  Google Scholar 

  • Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259

    Google Scholar 

  • Mustafa AM, Poulsen TG, Sheng K (2016) Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl Energy 180:661–671

    Article  CAS  Google Scholar 

  • Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv Bioref 4:157–191

    Article  CAS  Google Scholar 

  • Pérez J, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  Google Scholar 

  • Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2:23

    Article  Google Scholar 

  • Poszytek K, Ciezkowska M, Sklodowska A, Drewniak L (2016) Microbial consortium with high cellulolytic activity (MCHCA) for enhanced biogas production. Front Microbiol 7:324

    Article  Google Scholar 

  • Ray MJ, Leak DJ, Spanu PD, Murphy RJ (2010) Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass Bioenergy 34:1257–1262

    Article  CAS  Google Scholar 

  • Reid ID (1985) Biological delignification of aspen wood by solid-state fermentation with the white-rot fungus Merulius tremellosus. Appl Environ Microbiol 50:133–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez C, Alaswad A, Benyounis K, Olabi A (2017) Pretreatment techniques used in biogas production from grass. Renew Sust Energ Rev 68:1193–1204

    Article  CAS  Google Scholar 

  • Rouches E, Herpoël-Gimbert I, Steyer J, Carrere H (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sust Energ Rev 59:179–198

    Article  CAS  Google Scholar 

  • Saxena R, Adhikari D, Goyal H (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sust Energ Rev 13:167–178

    Article  Google Scholar 

  • Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96

    Article  CAS  Google Scholar 

  • Shi Y, Yan X, Li Q, Wang X, Xie S, Chai L, Yuan J (2017) Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochem 52:238–242

    Article  CAS  Google Scholar 

  • da Silva Machado A, Ferraz A (2017) Biological pretreatment of sugarcane bagasse with basidiomycetes producing varied patterns of biodegradation. Bioresour Technol 225:17–22

    Article  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass–an overview. Bioresour Technol 199:76–82

    Article  CAS  Google Scholar 

  • Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18

    Article  CAS  Google Scholar 

  • Song L, Yu H, Ma F, Zhang X (2013) Biological pretreatment under non-sterile conditions for enzymatic hydrolysis of corn stover. Bioresources 8:3802–3816

    Article  Google Scholar 

  • Srebotnik E, Jensen K, Kawai S, Hammel KE (1997) Evidence that Ceriporiopsis subvermispora degrades nonphenolic lignin structures by a one-electron-oxidation mechanism. Appl Environ Microbiol 63:4435–4440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suhara H, Kodama S, Kamei I, Maekawa N, Meguro S (2012) Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodegrad 75:176–180

    Article  CAS  Google Scholar 

  • Vasco-Correa J, Ge X, Li Y (2016) Fungal pretreatment of non-sterile miscanthus for enhanced enzymatic hydrolysis. Bioresour Technol 203:118–123

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457

    Article  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  Google Scholar 

  • Winquist E, Moilanen U, Mettälä A, Leisola M, Hatakka A (2008) Production of lignin modifying enzymes on industrial waste material by solid-state cultivation of fungi. Biochem Eng J 42:128–132

    Article  CAS  Google Scholar 

  • Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T, Eurwilaichitr L, Igarashi Y, Champreda V (2010) Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzym Microb Technol 47:283–290

    Article  CAS  Google Scholar 

  • Woolridge EM (2014) Mixed enzyme systems for delignification of lignocellulosic biomass. Catalysts 4:1–35

    Article  Google Scholar 

  • Yan X, Wang Z, Zhang K, Si M, Liu M, Chai L, Liu X, Shi Y (2017) Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresour Technol 245:419–425

    Article  CAS  Google Scholar 

  • Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Nasrulhaq Boyce A (2014) Bioethanol production from fermentable sugar juice. Sci World J, Article ID 957102

    Google Scholar 

  • Zabed H, Boyce A, Faruq G, Sahu J (2016a) A comparative evaluation of agronomic performance and kernel composition of normal and high sugary corn genotypes (Zea mays L.) grown for dry-grind ethanol production. Ind Crop Prod 94:9–19

    Article  CAS  Google Scholar 

  • Zabed H, Faruq G, Boyce AN, Sahu JN, Ganesan P (2016b) Evaluation of high sugar containing corn genotypes as viable feedstocks for decreasing enzyme consumption during dry-grind ethanol production. J Taiwan Inst Chem Eng 58:467–475

    Article  CAS  Google Scholar 

  • Zabed H, Faruq G, Sahu J, Boyce A, Ganesan P (2016c) A comparative study on normal and high sugary corn genotypes for evaluating enzyme consumption during dry-grind ethanol production. Chem Eng J 287:691–703

    Article  CAS  Google Scholar 

  • Zabed H, Sahu J, Boyce A, Faruq G (2016d) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774

    Article  CAS  Google Scholar 

  • Zabed H, Boyce AN, Sahu J, Faruq G (2017a) Evaluation of the quality of dried distiller’s grains with solubles for normal and high sugary corn genotypes during dry-grind ethanol production. J Clean Prod 142:4282–4293

    Article  CAS  Google Scholar 

  • Zabed H, Sahu J, Suely A (2017b) Bioethanol production from lignocellulosic biomass: an overview of pretreatment, hydrolysis, and fermentation. In: Mondal P, Dalai AK (eds) Sustainable utilization of natural resources. Taylor & Francis, Boca Raton, p 145

    Chapter  Google Scholar 

  • Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017c) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501

    Article  CAS  Google Scholar 

  • Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J, Zhang H (2011) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol 102:8899–8906

    Article  CAS  Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the China Postdoctoral Science Foundation (Grant No.: 2017M621657), NSFC (Grant No.: 31571806), and Six Talent Peaks in Jiangsu Province (SWYY-018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Narayan Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zabed, H., Sultana, S., Sahu, J.N., Qi, X. (2018). An Overview on the Application of Ligninolytic Microorganisms and Enzymes for Pretreatment of Lignocellulosic Biomass. In: Sarangi, P., Nanda, S., Mohanty, P. (eds) Recent Advancements in Biofuels and Bioenergy Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-13-1307-3_3

Download citation

Publish with us

Policies and ethics